Radiation Therapeutics Development Team, Division of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
School of Biomedical Science, Korea University, Seoul, Republic of Korea.
Oncogene. 2021 Jan;40(3):508-521. doi: 10.1038/s41388-020-01543-1. Epub 2020 Nov 13.
PARK7 is involved in many key cellular processes, including cell proliferation, transcriptional regulation, cellular differentiation, oxidative stress protection, and mitochondrial function maintenance. Deregulation of PARK7 has been implicated in the pathogenesis of various human diseases, including cancer. Here, we aimed to clarify the effect of PARK7 on stemness and radioresistance of glioblastoma stem cells (GSCs). Serum differentiation and magnetic cell sorting of GSCs revealed that PARK7 was preferentially expressed in GSCs rather than differentiated GSCs. Immunohistochemical staining showed enhanced expression of PARK7 in glioma tissues compared to that in normal brain tissues. shRNA-mediated knockdown of PARK7 inhibited the self-renewal activity of GSCs in vitro, as evidenced by the results of neurosphere formation, limiting dilution, and soft-agar clonogenic assays. In addition, PARK7 knockdown suppressed GSC invasion and enhanced GSC sensitivity to ionizing radiation (IR). PARK7 knockdown suppressed expression of GSC signatures including nestin, epidermal growth factor receptor variant III (EGFRvIII), SOX2, NOTCH1, and OCT4. Contrarily, overexpression of PARK7 in CD133 non-GSCs increased self-renewal activities, migration, and IR resistance, and rescued the reduction of GSC factors under shPARK7-transfected and serum-differentiation conditions. Intriguingly, PARK7 acted as a co-chaperone of HSP90 by binding to it, protecting EGFRvIII from proteasomal degradation. Knockdown of PARK7 increased the production of reactive oxygen species, inducing partial apoptosis and enhancing IR sensitivity in GSCs. Finally, PARK7 knockdown increased mouse survival and IR sensitivity in vivo. Based on these data, we propose that PARK7 plays a pivotal role in the maintenance of stemness and therapeutic resistance in GSCs.
PARK7 参与许多关键的细胞过程,包括细胞增殖、转录调控、细胞分化、氧化应激保护和线粒体功能维持。PARK7 的失调与多种人类疾病的发病机制有关,包括癌症。在这里,我们旨在阐明 PARK7 对神经胶质瘤干细胞(GSCs)干性和放射抗性的影响。通过血清分化和磁性细胞分选发现,PARK7 优先在 GSCs 中表达,而不是在分化的 GSCs 中表达。免疫组织化学染色显示,与正常脑组织相比,PARK7 在胶质瘤组织中的表达增强。shRNA 介导的 PARK7 敲低抑制了 GSCs 的体外自我更新活性,这表现在神经球形成、有限稀释和软琼脂克隆形成实验中。此外,PARK7 敲低抑制了 GSC 的侵袭,并增强了 GSC 对电离辐射(IR)的敏感性。PARK7 敲低抑制了 GSC 标志物的表达,包括巢蛋白、表皮生长因子受体变体 III(EGFRvIII)、SOX2、NOTCH1 和 OCT4。相反,在 CD133 非 GSCs 中过表达 PARK7 增加了自我更新活性、迁移和 IR 抗性,并在 shPARK7 转染和血清分化条件下挽救了 GSC 因子的减少。有趣的是,PARK7 通过与 HSP90 结合作为 HSP90 的共伴侣,保护 EGFRvIII 免受蛋白酶体降解。PARK7 的敲低增加了活性氧的产生,诱导 GSCs 的部分凋亡并增强了 IR 敏感性。最后,PARK7 的敲低增加了体内小鼠的存活率和 IR 敏感性。基于这些数据,我们提出 PARK7 在 GSCs 干性和治疗抵抗的维持中发挥关键作用。