Suppr超能文献

大数据维度与社交网络分析的调查

A survey of Big Data dimensions vs Social Networks analysis.

作者信息

Ianni Michele, Masciari Elio, Sperlí Giancarlo

机构信息

DIMES - Department of Informatics, Modeling, Electronics and Systems, University of Calabria, 87036 Arcavacata, CS Italy.

Department of Electrical and Information Technology (DIETI), University of Naples Federico II, via Claudio 21, 80125 Naples, Italy.

出版信息

J Intell Inf Syst. 2021;57(1):73-100. doi: 10.1007/s10844-020-00629-2. Epub 2020 Nov 9.

Abstract

The pervasive diffusion of Social Networks (SN) produced an unprecedented amount of heterogeneous data. Thus, traditional approaches quickly became unpractical for real life applications due their intrinsic properties: large amount of user-generated data (text, video, image and audio), data heterogeneity and high speed generation rate. More in detail, the analysis of user generated data by popular social networks (i.e Facebook (https://www.facebook.com/), Twitter (https://www.twitter.com/), Instagram (https://www.instagram.com/), LinkedIn (https://www.linkedin.com/)) poses quite intriguing challenges for both research and industry communities in the task of analyzing user behavior, user interactions, link evolution, opinion spreading and several other important aspects. This survey will focus on the analyses performed in last two decades on these kind of data w.r.t. the dimensions defined for Big Data paradigm (the so called Big Data 6 V's).

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a278/7649712/c9aca0d91ede/10844_2020_629_Fig2_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验