Suppr超能文献

基于根尖片的种植体固定系统分类中通过深度神经网络进行迁移学习

Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs.

作者信息

Kim Jong-Eun, Nam Na-Eun, Shim June-Sung, Jung Yun-Hoa, Cho Bong-Hae, Hwang Jae Joon

机构信息

Department of Prosthodontics, Yonsei University College of Dentistry, Yonsei-ro 50-1, Seodaemun-gu, Seoul 03722, Korea.

Department of Oral and Maxillofacial Radiology, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan 50610, Korea.

出版信息

J Clin Med. 2020 Apr 14;9(4):1117. doi: 10.3390/jcm9041117.

Abstract

In the absence of accurate medical records, it is critical to correctly classify implant fixture systems using periapical radiographs to provide accurate diagnoses and treatments to patients or to respond to complications. The purpose of this study was to evaluate whether deep neural networks can identify four different types of implants on intraoral radiographs. In this study, images of 801 patients who underwent periapical radiographs between 2005 and 2019 at Yonsei University Dental Hospital were used. Images containing the following four types of implants were selected: Brånemark Mk TiUnite, Dentium Implantium, Straumann Bone Level, and Straumann Tissue Level. SqueezeNet, GoogLeNet, ResNet-18, MobileNet-v2, and ResNet-50 were tested to determine the optimal pre-trained network architecture. The accuracy, precision, recall, and F1 score were calculated for each network using a confusion matrix. All five models showed a test accuracy exceeding 90%. SqueezeNet and MobileNet-v2, which are small networks with less than four million parameters, showed an accuracy of approximately 96% and 97%, respectively. The results of this study confirmed that convolutional neural networks can classify the four implant fixtures with high accuracy even with a relatively small network and a small number of images. This may solve the inconveniences associated with unnecessary treatments and medical expenses caused by lack of knowledge about the exact type of implant.

摘要

在缺乏准确病历的情况下,使用根尖片正确分类种植体固定系统对于为患者提供准确诊断和治疗或应对并发症至关重要。本研究的目的是评估深度神经网络是否能够在口腔内X光片上识别四种不同类型的种植体。在本研究中,使用了2005年至2019年间在延世大学牙科学院接受根尖片检查的801名患者的图像。选择了包含以下四种类型种植体的图像:Brånemark Mk TiUnite、Dentium Implantium、Straumann骨水平型和Straumann软组织水平型。对SqueezeNet、GoogLeNet、ResNet-18、MobileNet-v2和ResNet-50进行了测试,以确定最佳的预训练网络架构。使用混淆矩阵为每个网络计算准确率、精确率、召回率和F1分数。所有五个模型的测试准确率均超过90%。参数少于400万的小型网络SqueezeNet和MobileNet-v2的准确率分别约为96%和97%。本研究结果证实,卷积神经网络即使使用相对较小的网络和少量图像,也能高精度地对四种种植体固定系统进行分类。这可能解决因对种植体的确切类型缺乏了解而导致的不必要治疗和医疗费用带来的不便。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c50/7230319/4ab0ac83b1ae/jcm-09-01117-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验