Central Laboratory/ Research Center of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
BMJ Open. 2020 Nov 16;10(11):e041397. doi: 10.1136/bmjopen-2020-041397.
This study aims to investigate the relationship between daily weather and transmission rate of SARS-CoV-2, and to develop a generalised model for future prediction of the COVID-19 spreading rate for a certain area with meteorological factors.
A retrospective, qualitative study.
We collected 382 596 records of weather data with four meteorological factors, namely, average temperature, relative humidity, wind speed, and air visibility, and 15 192 records of epidemic data with daily new confirmed case counts (1 587 209 confirmed cases in total) in nearly 500 areas worldwide from 20 January 2020 to 9 April 2020. Epidemic data were modelled against weather data to find a model that could best predict the future outbreak.
Significant correlation of the daily new confirmed case count with the weather 3 to 7 days ago were found. SARS-CoV-2 is easy to spread under weather conditions of average temperature at 5 to 15°C, relative humidity at 70% to 80%, wind speed at 1.5 to 4.5 m/s and air visibility less than 10 statute miles. A short-term model with these four meteorological variables was derived to predict the daily increase in COVID-19 cases; and a long-term model using temperature to predict the pandemic in the next week to month was derived. Taken China as a discovery dataset, it was well validated with worldwide data. According to this model, there are five viral transmission patterns, 'restricted', 'controlled', 'natural', 'tropical' and 'southern'. This model's prediction performance correlates with actual observations best (over 0.9 correlation coefficient) under natural spread mode of SARS-CoV-2 when there is not much human interference such as epidemic control.
This model can be used for prediction of the future outbreak, and illustrating the effect of epidemic control for a certain area.
本研究旨在探讨日常天气变化与 SARS-CoV-2 传播率之间的关系,并建立一个基于气象因素的特定区域 COVID-19 传播率的广义预测模型。
回顾性、定性研究。
我们收集了 2020 年 1 月 20 日至 2020 年 4 月 9 日期间全球近 500 个地区的 382596 份天气数据记录,包括平均温度、相对湿度、风速和空气能见度等四个气象因素,以及 15192 份每日新增确诊病例数的疫情数据(共 1587209 例确诊病例)。将疫情数据与天气数据进行建模,以找到最佳的预测未来疫情爆发的模型。
发现每日新增确诊病例数与 3 至 7 天前的天气有显著相关性。SARS-CoV-2 在平均气温 5 至 15°C、相对湿度 70%至 80%、风速 1.5 至 4.5 米/秒和空气能见度小于 10 法定英里的天气条件下容易传播。我们还建立了一个短期模型,使用这四个气象变量来预测 COVID-19 病例的每日增长;并建立了一个使用温度来预测未来一周至一个月大流行的长期模型。以中国作为发现数据集,该模型在全球范围内得到了很好的验证。根据该模型,SARS-CoV-2 的病毒传播模式有五种,分别是“受限”、“控制”、“自然”、“热带”和“南方”。在没有太多人为干预(如疫情控制)的情况下,当 SARS-CoV-2 呈自然传播模式时,该模型的预测性能与实际观测结果的相关性最佳(相关系数超过 0.9)。
该模型可用于预测未来疫情爆发情况,并说明特定区域疫情控制的效果。