Suppr超能文献

用于氢气传感的ALD-Pt@SWCNT/石墨烯三维纳米杂化结构的开发

Development of an ALD-Pt@SWCNT/Graphene 3D Nanohybrid Architecture for Hydrogen Sensing.

作者信息

Liu Bo, Alamri Mohammed, Walsh Michael, Doolin Jennifer L, Berrie Cindy L, Wu Judy Z

机构信息

Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States.

Department of Energy's National Security Campus, Kansas City, Missouri 64147, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53115-53124. doi: 10.1021/acsami.0c15532. Epub 2020 Nov 17.

Abstract

A nanohybrid architecture composed of single-wall carbon nanotube films and graphene heterostructures (SWCNT/graphene) was developed as a three-dimensional (3D) electrode. Atomic layer deposition (ALD) was used for conformal coating of catalytic Pt nanoparticles on the 3D ALD-Pt@SWCNT/graphene nanohybrid architecture for further enhancement of H sensing, taking advantage of the large sensing area and conformally coated nanostructures of the catalytic Pt. Remarkably, the H response was found to be improved by 50% in the SWCNT/graphene nanohybrid, indicating that graphene provides a more efficient charge transport. The ALD-Pt further enhances the H responsivity of the 3D ALD-Pt @SWCNT/graphene nanohybrids. By coating 10 cycles of ALD-Pt on the SWCNT/graphene nanohybrid, the H response (2.77%) is approximately twice that (1.4%) of its counterpart without the ALD-Pt. By further optimizing the 3D ALD-Pt@SWCNT/graphene nanohybrids with respect to the ALD-Pt cycle numbers and SWCNT film thickness, a H responsivity as high as 7.5% was achieved on the SWCNT/graphene nanohybrid sample with a 560 nm thick SWCNT film and 50 cycles of ALD-Pt.

摘要

一种由单壁碳纳米管薄膜和石墨烯异质结构(SWCNT/石墨烯)组成的纳米混合结构被开发为三维(3D)电极。利用催化铂的大传感面积和保形涂层纳米结构,采用原子层沉积(ALD)在3D ALD-Pt@SWCNT/石墨烯纳米混合结构上对催化铂纳米颗粒进行保形涂层,以进一步增强氢传感。值得注意的是,在SWCNT/石墨烯纳米混合结构中发现氢响应提高了50%,这表明石墨烯提供了更有效的电荷传输。ALD-Pt进一步提高了3D ALD-Pt@SWCNT/石墨烯纳米混合结构的氢响应率。通过在SWCNT/石墨烯纳米混合结构上涂覆10个循环的ALD-Pt,其氢响应(2.77%)约为未涂覆ALD-Pt的对应物(1.4%)的两倍。通过进一步优化3D ALD-Pt@SWCNT/石墨烯纳米混合结构的ALD-Pt循环数和SWCNT薄膜厚度,在具有560 nm厚SWCNT薄膜和50个ALD-Pt循环的SWCNT/石墨烯纳米混合样品上实现了高达7.5%的氢响应率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验