Suppr超能文献

用于透明导电电极应用的石墨烯上金属的选择性原子层沉积

Selective Atomic Layer Deposition of Metals on Graphene for Transparent Conducting Electrode Application.

作者信息

Kim Minsu, Nabeya Shunichi, Han Seung-Min, Kim Min-Sik, Lee Sangbong, Kim Hyun-Mi, Cho Seong-Yong, Lee Do-Joong, Kim Soo-Hyun, Kim Ki-Bum

机构信息

School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea.

Tanaka Kikinzoku Kogyo K. K., 22 Wadai, Tsukuba, Ibaraki 300-4247, Japan.

出版信息

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14331-14340. doi: 10.1021/acsami.9b23261. Epub 2020 Mar 15.

Abstract

Although graphene has considerable potential as a next-generation transparent conducting electrode (TCE) material owing to its excellent optical transparency and flexibility, its electrical properties require further improvement for industrial application. This study reports a pathway of doping graphene by selective atomic layer deposition (ALD) of metals to elevate the electrical conductivity of graphene. Introduction of a novel Pt precursor [dimethyl(,-dimethyl-3-butene-1-amine-)platinum(II); CHNPt; DDAP] facilitates a low-temperature (165 °C) process. The sheet resistance () of graphene is reduced significantly from 471 to 86.8 Ω sq after 200 cycles of Pt ALD, while the optical transmittance at 550 nm () is maintained above 90% up to 200 cycles due to the selective growth of Pt on the defects of graphene. Furthermore, comprehensive analysis, including metal (Ru, Pt, and Ni) ALD on graphene, metal (Ru, Pt, Ni, Au, and Co) evaporation on graphene, and change in the ALD chemicals, demonstrates that ALD allows efficient graphene doping and the oxygen affinity of the metal is one of the key properties for efficient graphene doping. Finally, Pt ALD is applied to a multilayer graphene to further reduce down to 75.8 Ω sq yet to be highly transparent ( 87.3%) after 200 cycles. In summary, the selective ALD of metals opens a way of improving the electrical properties of graphene to a level required for the industrial TCE application and has the potential to promote development of other types of functional metal-graphene composites.

摘要

尽管石墨烯因其优异的光学透明度和柔韧性作为下一代透明导电电极(TCE)材料具有巨大潜力,但其电学性能在工业应用中仍需进一步改善。本研究报道了一种通过金属的选择性原子层沉积(ALD)对石墨烯进行掺杂以提高其电导率的途径。引入一种新型铂前驱体[二甲基(,-二甲基-3-丁烯-1-胺-)铂(II);CHNPt;DDAP]有助于实现低温(165°C)工艺。经过200次铂原子层沉积循环后,石墨烯的薄层电阻()从471Ω/sq显著降低至86.8Ω/sq,而由于铂在石墨烯缺陷上的选择性生长,在550nm处的光学透过率()在200次循环内保持在90%以上。此外,包括在石墨烯上进行金属(钌、铂和镍)原子层沉积、在石墨烯上进行金属(钌、铂、镍、金和钴)蒸发以及原子层沉积化学物质变化的综合分析表明,原子层沉积能够实现高效的石墨烯掺杂,并且金属的氧亲和力是高效石墨烯掺杂的关键特性之一。最后,将铂原子层沉积应用于多层石墨烯,经过200次循环后,进一步将降低至75.8Ω/sq,同时仍保持高透明度(87.3%)。总之,金属的选择性原子层沉积为将石墨烯的电学性能提升至工业透明导电电极应用所需水平开辟了一条道路,并且有潜力推动其他类型功能性金属-石墨烯复合材料的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验