Suppr超能文献

一项用于鉴定参与光保护qH的新分子参与者的基因筛选

A Genetic Screen to Identify New Molecular Players Involved in Photoprotection qH in .

作者信息

Bru Pierrick, Nanda Sanchali, Malnoë Alizée

机构信息

Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.

出版信息

Plants (Basel). 2020 Nov 13;9(11):1565. doi: 10.3390/plants9111565.

Abstract

Photosynthesis is a biological process which converts light energy into chemical energy that is used in the Calvin-Benson cycle to produce organic compounds. An excess of light can induce damage to the photosynthetic machinery. Therefore, plants have evolved photoprotective mechanisms such as non-photochemical quenching (NPQ). To focus molecular insights on slowly relaxing NPQ processes in , previously, a qE-deficient line-the PsbS mutant-was mutagenized and a mutant with high and slowly relaxing NPQ was isolated. The mutated gene was named suppressor of quenching 1, or SOQ1, to describe its function. Indeed, when present, SOQ1 negatively regulates or suppresses a form of antenna NPQ that is slow to relax and is photoprotective. We have now termed this component qH and identified the plastid lipocalin, LCNP, as the effector for this energy dissipation mode to occur. Recently, we found that the relaxation of qH1, ROQH1, protein is required to turn off qH. The aim of this study is to identify new molecular players involved in photoprotection qH by a whole genome sequencing approach of chemically mutagenized . We conducted an EMS-mutagenesis on the double mutant and used chlorophyll fluorescence imaging to screen for suppressors and enhancers of qH. Out of 22,000 mutagenized plants screened, the molecular players cited above were found using a mapping-by-sequencing approach. Here, we describe the phenotypic characterization of the other mutants isolated from this genetic screen and an additional 8000 plants screened. We have classified them in several classes based on their fluorescence parameters, NPQ kinetics, and pigment content. A high-throughput whole genome sequencing approach on 65 mutants will identify the causal mutations thanks to allelic mutations from having reached saturation of the genetic screen. The candidate genes could be involved in the formation or maintenance of quenching sites for qH, in the regulation of qH at the transcriptional level, or be part of the quenching site itself.

摘要

光合作用是一个将光能转化为化学能的生物过程,该化学能在卡尔文-本森循环中用于生产有机化合物。过量的光会对光合机制造成损害。因此,植物进化出了诸如非光化学猝灭(NPQ)等光保护机制。为了深入了解植物中缓慢弛豫的NPQ过程的分子机制,之前对一个缺乏qE的品系——PsbS突变体进行了诱变,并分离出了一个具有高且缓慢弛豫NPQ的突变体。该突变基因被命名为猝灭抑制因子1,即SOQ1,以描述其功能。实际上,当SOQ1存在时,它会负向调节或抑制一种弛豫缓慢且具有光保护作用的天线NPQ形式。我们现在将这个组分称为qH,并确定质体脂钙蛋白LCNP是这种能量耗散模式发生的效应器。最近,我们发现qH1(ROQH1)蛋白的弛豫是关闭qH所必需的。本研究的目的是通过对化学诱变的植物进行全基因组测序方法,鉴定参与光保护qH的新分子成分。我们对双突变体进行了EMS诱变,并使用叶绿素荧光成像筛选qH的抑制子和增强子。在筛选的22000株诱变植物中,通过测序定位方法发现了上述分子成分。在这里,我们描述了从该遗传筛选中分离出的其他突变体以及另外8000株筛选植物的表型特征。我们根据它们的荧光参数、NPQ动力学和色素含量将它们分为几类。由于遗传筛选已达到饱和,通过对65个突变体进行高通量全基因组测序方法将鉴定出因果突变。候选基因可能参与qH猝灭位点的形成或维持、在转录水平上对qH的调控,或者是猝灭位点本身的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f445/7696684/798b440b5956/plants-09-01565-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验