Suppr超能文献

中鼻甲拭子与鼻咽拭子检测严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)的敏感性。

Sensitivity of midturbinate versus nasopharyngeal swabs for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

机构信息

Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.

Sinai Health System, Toronto, Canada.

出版信息

Infect Control Hosp Epidemiol. 2021 Aug;42(8):1001-1003. doi: 10.1017/ice.2020.1326. Epub 2020 Nov 18.

Abstract

To compare sensitivity of specimens for COVID-19 diagnosis, we tested 151 nasopharyngeal/midturbinate swab pairs from 117 COVID-19 inpatients using reverse-transcriptase polymerase chain reaction (RT-PCR). Sensitivity was 94% for nasopharyngeal and 75% for midturbinate swabs (P = .0001). In 88 nasopharyngeal/midturbinate pairs with matched saliva, sensitivity was 86% for nasopharyngeal swabs and 88% for combined midturbinate swabs/saliva.

摘要

为了比较用于 COVID-19 诊断的标本的灵敏度,我们使用逆转录聚合酶链反应(RT-PCR)对 117 例 COVID-19 住院患者的 151 对鼻咽/中鼻甲拭子进行了检测。鼻咽拭子的灵敏度为 94%,中鼻甲拭子的灵敏度为 75%(P=.0001)。在 88 对具有匹配唾液的鼻咽/中鼻甲拭子对中,鼻咽拭子的灵敏度为 86%,中鼻甲拭子/唾液的联合灵敏度为 88%。

相似文献

1
Sensitivity of midturbinate versus nasopharyngeal swabs for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Infect Control Hosp Epidemiol. 2021 Aug;42(8):1001-1003. doi: 10.1017/ice.2020.1326. Epub 2020 Nov 18.
5
Clinical evaluation of nasopharyngeal, midturbinate nasal and oropharyngeal swabs for the detection of SARS-CoV-2.
Diagn Microbiol Infect Dis. 2022 Apr;102(4):115618. doi: 10.1016/j.diagmicrobio.2021.115618. Epub 2021 Dec 16.
6
Evaluation of Self-Collected Midturbinate Nasal Swabs and Saliva for Detection of SARS-CoV-2 RNA.
J Clin Microbiol. 2021 Aug 18;59(9):e0084821. doi: 10.1128/JCM.00848-21.
7
Buccal swabs as non-invasive specimens for detection of severe acute respiratory syndrome coronavirus-2.
J Int Med Res. 2021 May;49(5):3000605211016996. doi: 10.1177/03000605211016996.
9
Diagnostic Performance Assessment of Saliva RT-PCR and Nasopharyngeal Antigen for the Detection of SARS-CoV-2 in Peru.
Microbiol Spectr. 2022 Aug 31;10(4):e0086122. doi: 10.1128/spectrum.00861-22. Epub 2022 Jul 18.

引用本文的文献

1
Impact of Swabbing Location, Self-Swabbing, and Food Intake on SARS-CoV-2 RNA Detection.
Microorganisms. 2024 Mar 15;12(3):591. doi: 10.3390/microorganisms12030591.
2
Molecular Diagnosis of COVID-19; Biosafety and Pre-analytical Recommendations.
Iran J Pathol. 2023 Summer;18(3):244-256. doi: 10.30699/IJP.2023.1988405.3061. Epub 2023 Jul 16.
4
Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-Cell responses.
Front Cell Infect Microbiol. 2023 Jan 25;13:1110467. doi: 10.3389/fcimb.2023.1110467. eCollection 2023.
6
SARS-COV-2 detection in saliva and nasopharyngeal swabs using RT-PCR was similar.
Braz Dent J. 2022 Mar-Apr;33(2):68-72. doi: 10.1590/0103-6440202204591.
7
Saliva as a diagnostic specimen for SARS-CoV-2 detection: A scoping review.
Oral Dis. 2022 Nov;28 Suppl 2:2362-2390. doi: 10.1111/odi.14216. Epub 2022 Apr 27.
8
COVID-19 Infection in Children: Diagnosis and Management.
Curr Infect Dis Rep. 2022;24(4):51-62. doi: 10.1007/s11908-022-00779-0. Epub 2022 Apr 11.
9
Comparison of Saliva and Midturbinate Swabs for Detection of SARS-CoV-2.
Microbiol Spectr. 2022 Apr 27;10(2):e0012822. doi: 10.1128/spectrum.00128-22. Epub 2022 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验