Suppr超能文献

优化通风的急性护理病房中空气传播 SARS-CoV-2 的发生率较低。

Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation.

机构信息

Centre de recherche de l'institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Canada.

Sunnybrook Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.

出版信息

Emerg Microbes Infect. 2020 Dec;9(1):2597-2605. doi: 10.1080/22221751.2020.1850184.

Abstract

The worldwide repercussions of COVID-19 sparked important research efforts, yet the detailed contribution of aerosols in the transmission of SARS-CoV-2 has not been elucidated. In an attempt to quantify viral aerosols in the environment of infected patients, we collected 100 air samples in acute care hospital rooms hosting 22 patients over the course of nearly two months using three different air sampling protocols. Quantification by RT-qPCR (ORF1b) led to 11 positive samples from 6 patient rooms ( < 40). Viral cultures were negative. No correlation was observed between particular symptoms, length of hospital stay, clinical parameters, and time since symptom onset and the detection of airborne viral RNA. Low detection rates in the hospital rooms may be attributable to the appropriate application of mitigation methods according to the risk control hierarchy, such as increased ventilation to 4.85 air changes per hour to create negative pressure rooms. Our work estimates the mean emission rate of patients and potential airborne concentration in the absence of ventilation. Additional research is needed understand aerosolization events occur, contributing factors, and how best to prevent them.

摘要

新冠疫情在全球范围内引发了重要的研究工作,但气溶胶在 SARS-CoV-2 传播中的详细作用仍未阐明。为了定量检测感染患者环境中的病毒气溶胶,我们在急性护理病房内对 22 名患者进行了近两个月的研究,使用了三种不同的空气采样方案,共采集了 100 个空气样本。通过 RT-qPCR(ORF1b)定量检测,从 6 个患者病房中检测到 11 份阳性样本(<40)。病毒培养结果为阴性。未观察到特定症状、住院时间、临床参数以及症状出现时间与空气中病毒 RNA 的检测之间存在相关性。医院病房中低水平的检出率可能归因于根据风险控制等级适当应用了缓解措施,例如增加通风至每小时 4.85 次换气以创建负压病房。本研究估计了患者的平均排放率和在没有通风的情况下潜在的空气传播浓度。还需要进一步研究以了解气溶胶化事件的发生、影响因素以及如何最好地预防这些事件。

相似文献

1
Low incidence of airborne SARS-CoV-2 in acute care hospital rooms with optimized ventilation.
Emerg Microbes Infect. 2020 Dec;9(1):2597-2605. doi: 10.1080/22221751.2020.1850184.
2
Air and Environmental Contamination Caused by COVID-19 Patients: a Multi-Center Study.
J Korean Med Sci. 2020 Sep 21;35(37):e332. doi: 10.3346/jkms.2020.35.e332.
5
Spread of SARS-CoV-2 in hospital areas.
Environ Res. 2022 Mar;204(Pt B):112074. doi: 10.1016/j.envres.2021.112074. Epub 2021 Sep 20.
7
Assessment of Air Contamination by SARS-CoV-2 in Hospital Settings.
JAMA Netw Open. 2020 Dec 1;3(12):e2033232. doi: 10.1001/jamanetworkopen.2020.33232.
8
Sampling for SARS-CoV-2 Aerosols in Hospital Patient Rooms.
Viruses. 2021 Nov 23;13(12):2347. doi: 10.3390/v13122347.
9
Genetic Load of SARS-CoV-2 in Aerosols Collected in Operating Theaters.
Appl Environ Microbiol. 2022 Oct 11;88(19):e0129722. doi: 10.1128/aem.01297-22. Epub 2022 Sep 14.
10
Identifying the Risk of SARS-CoV-2 Infection and Environmental Monitoring in Airborne Infectious Isolation Rooms (AIIRs).
Virol Sin. 2020 Dec;35(6):785-792. doi: 10.1007/s12250-020-00301-7. Epub 2020 Sep 28.

引用本文的文献

2
Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols.
Mikrochim Acta. 2024 Feb 14;191(3):132. doi: 10.1007/s00604-024-06213-7.
3
Real-time environmental surveillance of SARS-CoV-2 aerosols.
Nat Commun. 2023 Jul 10;14(1):3692. doi: 10.1038/s41467-023-39419-z.
4
Transmission of SARS-CoV-2 in the workplace: Key findings from a rapid review of the literature.
Aerosol Sci Technol. 2023 Jan 19;57(3):233-254. doi: 10.1080/02786826.2023.2166394.
7
The Control of Metabolic CO in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases.
Int J Environ Res Public Health. 2022 May 28;19(11):6605. doi: 10.3390/ijerph19116605.
8
SARS-CoV-2 Droplet and Airborne Transmission Heterogeneity.
J Clin Med. 2022 May 6;11(9):2607. doi: 10.3390/jcm11092607.
10
Detection and isolation of airborne SARS-CoV-2 in a hospital setting.
Indoor Air. 2022 Mar;32(3):e13023. doi: 10.1111/ina.13023.

本文引用的文献

1
Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients.
Int J Infect Dis. 2020 Nov;100:476-482. doi: 10.1016/j.ijid.2020.09.025. Epub 2020 Sep 16.
2
4
Sampling and detection of corona viruses in air: A mini review.
Sci Total Environ. 2020 Oct 20;740:140207. doi: 10.1016/j.scitotenv.2020.140207. Epub 2020 Jun 15.
5
Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients.
Nat Commun. 2020 May 29;11(1):2800. doi: 10.1038/s41467-020-16670-2.
6
Persistent viral shedding of SARS-CoV-2 in faeces - a rapid review.
Colorectal Dis. 2020 Jun;22(6):611-620. doi: 10.1111/codi.15138. Epub 2020 Jun 4.
7
Case Report: Viral Shedding for 60 Days in a Woman with COVID-19.
Am J Trop Med Hyg. 2020 Jun;102(6):1210-1213. doi: 10.4269/ajtmh.20-0275.
8
Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals.
Nature. 2020 Jun;582(7813):557-560. doi: 10.1038/s41586-020-2271-3. Epub 2020 Apr 27.
9
Persistent viral RNA positivity during the recovery period of a patient with SARS-CoV-2 infection.
J Med Virol. 2020 Sep;92(9):1681-1683. doi: 10.1002/jmv.25940. Epub 2020 Jun 2.
10
Temporal dynamics in viral shedding and transmissibility of COVID-19.
Nat Med. 2020 May;26(5):672-675. doi: 10.1038/s41591-020-0869-5. Epub 2020 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验