Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999017, China.
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Sci Robot. 2020 Nov 18;5(48). doi: 10.1126/scirobotics.abc8191.
Millirobots that can adapt to unstructured environments, operate in confined spaces, and interact with a diverse range of objects would be desirable for exploration and biomedical applications. The continued development of millirobots, however, requires simple and scalable fabrication techniques. Here, we propose a minimalist approach to construct millirobots by coating inanimate objects with a composited agglutinate magnetic spray. Our approach enables a variety of one-dimensional (1D), 2D, or 3D objects to be covered with a thin magnetically drivable film (~100 to 250 micrometers in thickness). The film is thin enough to preserve the original size, morphology, and structure of the objects while providing actuation of up to hundreds of times its own weight. Under the actuation of a magnetic field, our millirobots are able to demonstrate a range of locomotive abilities: crawling, walking, and rolling. Moreover, we can reprogram and disintegrate the magnetic film on our millirobots on demand. We leverage these abilities to demonstrate biomedical applications, including catheter navigation and drug delivery.
能够适应非结构化环境、在受限空间中操作以及与各种物体交互的毫微机器人对于探索和生物医学应用来说是非常理想的。然而,毫微机器人的持续发展需要简单且可扩展的制造技术。在这里,我们提出了一种通过涂覆无生命物体的复合粘性磁喷雾来构建毫微机器人的极简方法。我们的方法可以使各种一维 (1D)、二维或三维物体覆盖一层薄薄的可磁驱动膜(厚度约为 100 到 250 微米)。该薄膜足够薄,可以保留物体的原始尺寸、形态和结构,同时提供高达其自身重量数百倍的驱动力。在磁场的驱动下,我们的毫微机器人能够展示出一系列的运动能力:爬行、行走和滚动。此外,我们可以根据需要重新编程和分解毫微机器人上的磁性薄膜。我们利用这些能力来展示生物医学应用,包括导管导航和药物输送。