Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.
Sci Rep. 2020 Nov 18;10(1):20103. doi: 10.1038/s41598-020-76097-z.
Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84-0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.
饮食是体重管理策略的重要组成部分,但对于相同饮食的反应存在差异,这使得难以预测个体的减肥效果。基于组学的技术现在可以在个体水平上分析多种因素来预测减肥。在这里,我们将 106 名超重非糖尿病丹麦中年人的减肥应答者(N=106)和非应答者(N=97)分为两组,分别对应之前报道的两项为期 8 周的饮食试验。随机森林模型整合了肠道微生物组、宿主遗传学、尿液代谢组学、生理和人体测量学指标,这些指标在任何饮食干预之前进行测量,以确定与饮食相结合的减肥个体易感性特征。与仅饮食模型(ROC-AUC:0.62)相比,减肥的最具预测性模型包括饮食、肠道细菌种类和尿液代谢物的特征(ROC-AUC:0.84-0.88)。整合多组学的模型集成可以以 80%的置信度识别 64%的非应答者。这样的模型将有助于选择适当的体重管理策略,因为个体对饮食反应的倾向存在差异。