Suppr超能文献

用于预测随机对照饮食试验中体重减轻的数据分析。

Data integration for prediction of weight loss in randomized controlled dietary trials.

机构信息

Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.

Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China.

出版信息

Sci Rep. 2020 Nov 18;10(1):20103. doi: 10.1038/s41598-020-76097-z.

Abstract

Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84-0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.

摘要

饮食是体重管理策略的重要组成部分,但对于相同饮食的反应存在差异,这使得难以预测个体的减肥效果。基于组学的技术现在可以在个体水平上分析多种因素来预测减肥。在这里,我们将 106 名超重非糖尿病丹麦中年人的减肥应答者(N=106)和非应答者(N=97)分为两组,分别对应之前报道的两项为期 8 周的饮食试验。随机森林模型整合了肠道微生物组、宿主遗传学、尿液代谢组学、生理和人体测量学指标,这些指标在任何饮食干预之前进行测量,以确定与饮食相结合的减肥个体易感性特征。与仅饮食模型(ROC-AUC:0.62)相比,减肥的最具预测性模型包括饮食、肠道细菌种类和尿液代谢物的特征(ROC-AUC:0.84-0.88)。整合多组学的模型集成可以以 80%的置信度识别 64%的非应答者。这样的模型将有助于选择适当的体重管理策略,因为个体对饮食反应的倾向存在差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c37/7674420/25c180f0fc8f/41598_2020_76097_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验