Suppr超能文献

肠道微生物群可预测肥胖患者短期低碳水化合物饮食 (LCD) 干预的结果。

Gut Microbiota Serves a Predictable Outcome of Short-Term Low-Carbohydrate Diet (LCD) Intervention for Patients with Obesity.

机构信息

Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical Universitygrid.284723.8, Guangzhou, China.

State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.

出版信息

Microbiol Spectr. 2021 Oct 31;9(2):e0022321. doi: 10.1128/Spectrum.00223-21. Epub 2021 Sep 15.

Abstract

To date, much progress has been made in dietary therapy for obese patients. A low-carbohydrate diet (LCD) has reached a revival in its clinical use during the past decade with undefined mechanisms and debatable efficacy. The gut microbiota has been suggested to promote energy harvesting. Here, we propose that the gut microbiota contributes to the inconsistent outcome under an LCD. To test this hypothesis, patients with obesity or patients who were overweight were randomly assigned to a normal diet (ND) or an LCD group with energy intake for 12 weeks. Using matched sampling, the microbiome profile at baseline and end stage was examined. The relative abundance of butyrate-producing bacteria, including and , was markedly increased after LCD intervention for 12 weeks. Moreover, within the LCD group, participants with a higher relative abundance of at baseline exhibited a better response to LCD intervention and achieved greater weight loss outcomes. Nevertheless, the adoption of an artificial neural network (ANN)-based prediction model greatly surpasses a general linear model in predicting weight loss outcomes after LCD intervention. Therefore, the gut microbiota served as a positive outcome predictor and has the potential to predict weight loss outcomes after short-term LCD intervention. Gut microbiota may help to guide the clinical application of short-term LCD intervention to develop effective weight loss strategies. (This study has been registered at the China Clinical Trial Registry under approval no. ChiCTR1800015156). Obesity and its related complications pose a serious threat to human health. Short-term low-carbohydrate diet (LCD) intervention without calorie restriction has a significant weight loss effect for overweight/obese people. Furthermore, the relative abundance of is a positive outcome predictor of individual weight loss after short-term LCD intervention. Moreover, leveraging on these distinct gut microbial structures at baseline, we have established a prediction model based on the artificial neural network (ANN) algorithm that could be used to estimate weight loss potential before each clinical trial (with Chinese patent number 2021104655623). This will help to guide the clinical application of short-term LCD intervention to improve weight loss strategies.

摘要

迄今为止,在肥胖患者的饮食治疗方面已经取得了很大进展。在过去十年中,低碳水化合物饮食(LCD)在临床应用中重新焕发生机,但作用机制尚未明确,疗效也存在争议。肠道微生物群被认为可以促进能量的获取。在这里,我们提出肠道微生物群是导致 LCD 下结果不一致的原因。为了验证这一假设,将肥胖患者或超重患者随机分配到正常饮食(ND)或 LCD 组,进行为期 12 周的能量摄入。采用匹配采样,在基线和终末期检查微生物组谱。在 LCD 干预 12 周后,丁酸产生菌(包括 和 )的相对丰度显著增加。此外,在 LCD 组中,基线时 相对丰度较高的参与者对 LCD 干预的反应更好,体重减轻效果更明显。然而,采用基于人工神经网络(ANN)的预测模型在预测 LCD 干预后的体重减轻结果方面大大优于一般线性模型。因此,肠道微生物群作为一个积极的结果预测因子,有可能预测短期 LCD 干预后的体重减轻结果。肠道微生物群可能有助于指导短期 LCD 干预的临床应用,以制定有效的减肥策略。(本研究已在中国临床试验注册中心注册,注册号为 ChiCTR1800015156)。肥胖及其相关并发症对人类健康构成严重威胁。短期低碳水化合物饮食(LCD)干预无需限制热量,对超重/肥胖人群有显著的减肥效果。此外,基线时 的相对丰度是个体短期 LCD 干预后体重减轻的一个积极结果预测因子。此外,利用这些基线时的不同肠道微生物结构,我们建立了一个基于人工神经网络(ANN)算法的预测模型,可用于在每次临床试验前估计减肥潜力(具有中国专利号 2021104655623)。这将有助于指导短期 LCD 干预的临床应用,以改善减肥策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ec/8557869/79b9e883b8c0/spectrum.00223-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验