Suppr超能文献

基于 UHPLC-HRMS 的骨肉瘤综合代谢组学分析。

Comprehensive metabolomic profiling of osteosarcoma based on UHPLC-HRMS.

机构信息

Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.

Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, 510080, People's Republic of China.

出版信息

Metabolomics. 2020 Nov 18;16(12):120. doi: 10.1007/s11306-020-01745-4.

Abstract

INTRODUCTION

Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. An increasing number of studies have demonstrated that tumor proliferation and metastasis are closely related to complex metabolic reprogramming. However, there are limited data to provide a comprehensive metabolic picture of osteosarcoma.

OBJECTIVES

Our study aims to identify aberrant metabolic pathways and seek potential adjuvant biomarkers for osteosarcoma.

METHODS

Serum samples were collected from 65 osteosarcoma patients and 30 healthy controls. Nontargeted metabolomic profiling was performed by liquid chromatography-mass spectrometry (LC-MS) based on univariate and multivariate statistical analyses.

RESULTS

The OPLS-DA model analysis identified clear separations among groups. We identified a set of differential metabolites such as higher serum levels of adenosine-5-monophosphate, inosine-5-monophosphate and guanosine monophosphate in primary OS patients compared to healthy controls, and higher serum levels of 5-aminopentanamide, 13(S)-HpOTrE (FA 18:3 + 2O) and methionine sulfoxide in lung metastatic OS patients compared to primary OS patients, revealing aberrant metabolic features during the proliferation and metastasis of osteosarcoma. We found a group of metabolites especially lactic acid and glutamic acid, with AUC values of 0.97 and 0.98, which could serve as potential adjuvant diagnostic biomarkers for primary osteosarcoma, and a panel of 2 metabolites, 5-aminopentanamide and 13(S)-HpOTrE (FA 18:3 + 2O), with an AUC value of 0.92, that had good monitoring ability for lung metastases.

CONCLUSIONS

Our study provides new insight into the aberrant metabolic features of osteosarcoma. The potential biomarkers identified here may have translational significance.

摘要

简介

骨肉瘤(OS)是儿童和青少年中最常见的原发性恶性骨肿瘤。越来越多的研究表明,肿瘤的增殖和转移与复杂的代谢重编程密切相关。然而,目前的数据还不足以提供骨肉瘤的全面代谢图谱。

目的

本研究旨在确定骨肉瘤中异常的代谢途径,并寻找潜在的辅助诊断生物标志物。

方法

收集了 65 例骨肉瘤患者和 30 例健康对照者的血清样本。采用基于液相色谱-质谱联用(LC-MS)的非靶向代谢组学分析方法,通过单变量和多变量统计分析进行分析。

结果

OPLS-DA 模型分析清楚地区分了各组。我们鉴定出了一组差异代谢物,如原发性骨肉瘤患者血清中腺嘌呤-5-单磷酸、肌苷-5-单磷酸和鸟苷单磷酸水平升高,肺转移骨肉瘤患者血清中 5-氨基戊酰胺、13(S)-HpOTrE(FA 18:3+2O)和甲硫氨酸亚砜水平升高,揭示了骨肉瘤增殖和转移过程中的异常代谢特征。我们发现一组代谢物,特别是乳酸和谷氨酸,其 AUC 值分别为 0.97 和 0.98,可作为原发性骨肉瘤潜在的辅助诊断生物标志物;而 5-氨基戊酰胺和 13(S)-HpOTrE(FA 18:3+2O)这两种代谢物组成的生物标志物组合,AUC 值为 0.92,对肺转移具有良好的监测能力。

结论

本研究为骨肉瘤的异常代谢特征提供了新的见解。本研究中鉴定的潜在生物标志物可能具有转化意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c3c/7674324/35bd93f93b88/11306_2020_1745_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验