Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
Department of Orthopaedic Surgery, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States of America.
Bone. 2021 Feb;143:115761. doi: 10.1016/j.bone.2020.115761. Epub 2020 Nov 18.
Pulsed electromagnetic field (PEMF) treatments stimulate bone formation activities though further work is needed to optimize its therapeutic benefit. PEMF can generate local potential gradients and electric currents that have been suggested to mimic bone electrochemical responses to load. In line with this reasoning, a recent publication reported that PEMF application on isolated bone tissue induced detectable micro-vibrations (doi:https://doi.org/10.1109/TMAG.2016.2515069). To determine the ability of PEMF to intervene in a rat model of osteoporosis, we tested its effect on trabecular and cortical bone following ovariectomy. Four PEMF treatments, with increasing sinusoidal amplitude rise with time (3850 Hz pulse frequency and 15 Hz repetition rate at 10 tesla/sec (T/s), 30 T/s, 100 T/s, or 300 T/s), were compared to the efficacy of an osteoporosis drug, alendronate, in reducing levels of trabecular bone loss in the proximal tibia. Herein, the novel findings from our study are: (1) 30 T/s PEMF treatment approached the efficacy of alendronate in reducing trabecular bone loss, but differed from it by not reducing bone formation rates; and (2) 30 T/s and 100 T/s PEMF treatments imparted measurable alterations in lacunocanalicular features in cortical bone, consistent with osteocyte sensitivity to PEMF in vivo. The efficacy of specific PEMF doses may relate to their ability to modulate osteocyte function such that the 30 T/s, and to a lesser extent 100 T/s, doses preferentially antagonize trabecular bone resorption while stimulating bone formation. Thus, PEMF treatments of specific magnetic field magnitudes exert a range of measurable biological effects in trabecular and cortical bone tissue in osteoporotic rats.
脉冲电磁场 (PEMF) 治疗通过进一步的工作来刺激骨形成活动,以优化其治疗效果。PEMF 可以产生局部电位梯度和电流,这些电流被认为可以模拟骨对负荷的电化学响应。基于这一推理,最近的一篇出版物报道称,PEMF 应用于分离的骨组织会引起可检测的微振动(doi:https://doi.org/10.1109/TMAG.2016.2515069)。为了确定 PEMF 在骨质疏松症大鼠模型中的干预能力,我们测试了它对去卵巢后小梁骨和皮质骨的影响。四种 PEMF 处理方法,随着时间的推移正弦幅度增加(3850 Hz 脉冲频率和 15 Hz 重复率为 10 特斯拉/秒 (T/s)、30 T/s、100 T/s 或 300 T/s),与骨质疏松药物阿仑膦酸钠相比,比较了它们在减少胫骨近端小梁骨丢失水平方面的疗效。在此,我们的研究有以下新发现:(1) 30 T/s PEMF 处理方法接近阿仑膦酸钠降低小梁骨丢失的疗效,但与阿仑膦酸钠不同,它不会降低骨形成率;(2) 30 T/s 和 100 T/s PEMF 处理方法对皮质骨的腔隙-管腔特征产生了可测量的改变,这与体内成骨细胞对 PEMF 的敏感性一致。特定 PEMF 剂量的疗效可能与其调节成骨细胞功能的能力有关,使得 30 T/s,并且在较小程度上 100 T/s,剂量优先拮抗小梁骨吸收,同时刺激骨形成。因此,特定磁场强度的 PEMF 治疗在骨质疏松症大鼠的小梁骨和皮质骨组织中产生了一系列可测量的生物学效应。