Suppr超能文献

用于皮肤科面部去识别的生成对抗网络的当前态势:系统综述与评估

Current Landscape of Generative Adversarial Networks for Facial Deidentification in Dermatology: Systematic Review and Evaluation.

作者信息

Park Christine, Jeong Hyeon Ki, Henao Ricardo, Kheterpal Meenal

机构信息

Department of Dermatology, Duke University Medical Center, Durham, NC, United States.

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, United States.

出版信息

JMIR Dermatol. 2022 May 27;5(2):e35497. doi: 10.2196/35497.

Abstract

BACKGROUND

Deidentifying facial images is critical for protecting patient anonymity in the era of increasing tools for automatic image analysis in dermatology.

OBJECTIVE

The aim of this paper was to review the current literature in the field of automatic facial deidentification algorithms.

METHODS

We conducted a systematic search using a combination of headings and keywords to encompass the concepts of facial deidentification and privacy preservation. The MEDLINE (via PubMed), Embase (via Elsevier), and Web of Science (via Clarivate) databases were queried from inception to May 1, 2021. Studies of incorrect design and outcomes were excluded during the screening and review process.

RESULTS

A total of 18 studies reporting on various methodologies of facial deidentification algorithms were included in the final review. The study methods were rated individually regarding their utility for use cases in dermatology pertaining to skin color and pigmentation preservation, texture preservation, data utility, and human detection. Most studies that were notable in the literature addressed feature preservation while sacrificing skin color and texture.

CONCLUSIONS

Facial deidentification algorithms are sparse and inadequate for preserving both facial features and skin pigmentation and texture quality in facial photographs. A novel approach is needed to ensure greater patient anonymity, while increasing data access for automated image analysis in dermatology for improved patient care.

摘要

背景

在皮肤科自动图像分析工具日益增多的时代,对人脸图像进行去识别处理对于保护患者隐私至关重要。

目的

本文旨在综述自动面部去识别算法领域的当前文献。

方法

我们使用标题和关键词组合进行系统检索,以涵盖面部去识别和隐私保护的概念。从数据库创建至2021年5月1日,对MEDLINE(通过PubMed)、Embase(通过爱思唯尔)和Web of Science(通过科睿唯安)数据库进行了查询。在筛选和评审过程中排除了设计和结果有误的研究。

结果

最终评审纳入了18项报告面部去识别算法各种方法的研究。针对这些研究方法在皮肤科与肤色和色素沉着保留、纹理保留、数据实用性及人体检测相关用例中的效用进行了单独评分。文献中大多数值得注意的研究在牺牲肤色和纹理的同时关注特征保留。

结论

面部去识别算法在保留面部照片中的面部特征以及皮肤色素沉着和纹理质量方面较为匮乏且不足。需要一种新方法来确保更高的患者隐私性,同时增加皮肤科自动图像分析的数据获取,以改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4190/10334885/9b5b2545250e/derma_v5i2e35497_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验