Department of Emergency Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
Sensors (Basel). 2022 Sep 17;22(18):7054. doi: 10.3390/s22187054.
Intermittent manual measurement of vital signs may not rapidly predict sepsis development in febrile patients admitted to the emergency department (ED). We aimed to evaluate the predictive performance of a wireless monitoring device that continuously measures heart rate (HR) and respiratory rate (RR) and a machine learning analysis in febrile but stable patients in the ED. We analysed 468 patients (age, ≥18 years; training set, n = 277; validation set, n = 93; test set, n = 98) having fever (temperature >38 °C) and admitted to the isolation care unit of the ED. The AUROC of the fragmented model with device data was 0.858 (95% confidence interval [CI], 0.809−0.908), and that with manual data was 0.841 (95% CI, 0.789−0.893). The AUROC of the accumulated model with device data was 0.861 (95% CI, 0.811−0.910), and that with manual data was 0.853 (95% CI, 0.803−0.903). Fragmented and accumulated models with device data detected clinical deterioration in febrile patients at risk of septic shock 9 h and 5 h 30 min earlier, respectively, than those with manual data. Continuous vital sign monitoring using a wearable device could accurately predict clinical deterioration and reduce the time to recognise potential clinical deterioration in stable ED patients with fever.
间歇性手动测量生命体征可能无法快速预测急诊部(ED)发热患者的败血症发展。我们旨在评估一种无线监测设备的预测性能,该设备连续测量心率(HR)和呼吸频率(RR),并对 ED 中稳定但发热的患者进行机器学习分析。我们分析了 468 名(年龄≥18 岁;训练集 n=277;验证集 n=93;测试集 n=98)患有发热(体温>38°C)并收入 ED 隔离护理单元的患者。带设备数据的分段模型的 AUROC 为 0.858(95%置信区间[CI],0.809-0.908),带手动数据的 AUROC 为 0.841(95%CI,0.789-0.893)。带设备数据的累积模型的 AUROC 为 0.861(95%CI,0.811-0.910),带手动数据的 AUROC 为 0.853(95%CI,0.803-0.903)。与手动数据相比,带设备数据的分段和累积模型分别能更早地(提前 9 小时和 5 小时 30 分钟)检测到发热有败血症休克风险的患者的临床恶化。使用可穿戴设备连续监测生命体征可准确预测临床恶化,并减少识别稳定 ED 发热患者潜在临床恶化的时间。