Suppr超能文献

一种广义比例型归一化子带自适应滤波器。

A Generalized Proportionate-Type Normalized Subband Adaptive Filter.

作者信息

Chen Kuan-Lin, Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath

机构信息

Department of Electrical and Computer Engineering University of California, San Diego.

出版信息

Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.

Abstract

We show that a new design criterion, i.e., the least squares on subband errors regularized by a weighted norm, can be used to generalize the proportionate-type normalized subband adaptive filtering (PtNSAF) framework. The new criterion directly penalizes subband errors and includes a sparsity penalty term which is minimized using the damped regularized Newton's method. The impact of the proposed generalized PtNSAF (GPtNSAF) is studied for the system identification problem via computer simulations. Specifically, we study the effects of using different numbers of subbands and various sparsity penalty terms for quasi-sparse, sparse, and dispersive systems. The results show that the benefit of increasing the number of subbands is larger than promoting sparsity of the estimated filter coefficients when the target system is quasi-sparse or dispersive. On the other hand, for sparse target systems, promoting sparsity becomes more important. More importantly, the two aspects provide complementary and additive benefits to the GPtNSAF for speeding up convergence.

摘要

我们表明,一种新的设计准则,即通过加权范数正则化的子带误差最小二乘法,可用于推广比例型归一化子带自适应滤波(PtNSAF)框架。新准则直接惩罚子带误差,并包括一个稀疏性惩罚项,该惩罚项使用阻尼正则化牛顿法最小化。通过计算机仿真研究了所提出的广义PtNSAF(GPtNSAF)对系统辨识问题的影响。具体而言,我们研究了在准稀疏、稀疏和色散系统中使用不同数量子带和各种稀疏性惩罚项的效果。结果表明,当目标系统为准稀疏或色散时,增加子带数量的益处大于促进估计滤波器系数的稀疏性。另一方面,对于稀疏目标系统,促进稀疏性变得更为重要。更重要的是,这两个方面为GPtNSAF加速收敛提供了互补和累加的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a68/8903025/73242afc67f5/nihms-1784748-f0001.jpg

相似文献

1
A Generalized Proportionate-Type Normalized Subband Adaptive Filter.一种广义比例型归一化子带自适应滤波器。
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
2
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.
3
Proportionate Adaptive Filtering Algorithms Derived Using an Iterative Reweighting Framework.基于迭代重加权框架推导的比例自适应滤波算法
IEEE/ACM Trans Audio Speech Lang Process. 2021;29:171-186. doi: 10.1109/taslp.2020.3038526. Epub 2020 Nov 17.
4
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.
8
Region adaptive subband image coding.区域自适应子带图像编码。
IEEE Trans Image Process. 1998;7(5):632-48. doi: 10.1109/83.668022.
10
A Sparse Conjugate Gradient Adaptive Filter.一种稀疏共轭梯度自适应滤波器。
IEEE Signal Process Lett. 2020;27:1000-1004. doi: 10.1109/LSP.2020.3000459. Epub 2020 Jun 5.

引用本文的文献

1
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.

本文引用的文献

1
Jointly Leveraging Decorrelation and Sparsity for Improved Feedback Cancellation in Hearing Aids.联合利用去相关和稀疏性以改善助听器中的反馈消除
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:121-125. doi: 10.23919/eusipco47968.2020.9287330. Epub 2020 Dec 18.
2
Proportionate Adaptive Filters Based on Minimizing Diversity Measures for Promoting Sparsity.基于最小化差异度量以促进稀疏性的比例自适应滤波器
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:769-773. doi: 10.1109/ieeeconf44664.2019.9048716. Epub 2020 Mar 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验