Chen Kuan-Lin, Lee Ching-Hua, Rao Bhaskar D, Garudadri Harinath
Department of Electrical and Computer Engineering University of California, San Diego.
Conf Rec Asilomar Conf Signals Syst Comput. 2019 Nov;2019:749-753. doi: 10.1109/ieeeconf44664.2019.9048906. Epub 2020 Mar 30.
We show that a new design criterion, i.e., the least squares on subband errors regularized by a weighted norm, can be used to generalize the proportionate-type normalized subband adaptive filtering (PtNSAF) framework. The new criterion directly penalizes subband errors and includes a sparsity penalty term which is minimized using the damped regularized Newton's method. The impact of the proposed generalized PtNSAF (GPtNSAF) is studied for the system identification problem via computer simulations. Specifically, we study the effects of using different numbers of subbands and various sparsity penalty terms for quasi-sparse, sparse, and dispersive systems. The results show that the benefit of increasing the number of subbands is larger than promoting sparsity of the estimated filter coefficients when the target system is quasi-sparse or dispersive. On the other hand, for sparse target systems, promoting sparsity becomes more important. More importantly, the two aspects provide complementary and additive benefits to the GPtNSAF for speeding up convergence.
我们表明,一种新的设计准则,即通过加权范数正则化的子带误差最小二乘法,可用于推广比例型归一化子带自适应滤波(PtNSAF)框架。新准则直接惩罚子带误差,并包括一个稀疏性惩罚项,该惩罚项使用阻尼正则化牛顿法最小化。通过计算机仿真研究了所提出的广义PtNSAF(GPtNSAF)对系统辨识问题的影响。具体而言,我们研究了在准稀疏、稀疏和色散系统中使用不同数量子带和各种稀疏性惩罚项的效果。结果表明,当目标系统为准稀疏或色散时,增加子带数量的益处大于促进估计滤波器系数的稀疏性。另一方面,对于稀疏目标系统,促进稀疏性变得更为重要。更重要的是,这两个方面为GPtNSAF加速收敛提供了互补和累加的益处。