College of Plant Sciences, Jilin University, Changchun, 130062, China.
College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
Environ Microbiol. 2021 Sep;23(9):4881-4895. doi: 10.1111/1462-2920.15335. Epub 2021 Jan 25.
ATP-dependent Lon proteases function in bacterial pathogenesis by regulating the expression of the Type III secretion system; however, little is known about how Lon proteases regulate fungal pathogenesis. We previously investigated Lon-binding proteins involved in fungal pathogenesis that interact with PrePL, the smallest Magnaporthe oryzae Lon-binding protein. Here, we show that Lon cleaves PrePL and produces Pc, an extracellular 11-kDa isoform with catalase and peroxidase activity. The ΔPrePL loss-of-function strain showed stronger sporulation and accelerated disease development, suggesting a temporally specific negative regulatory mechanism controlled by PrePL in disease progression. Neither the truncated Pc, nor the full-length PrePL missing the Lon cleavage site complemented the ΔPrePL phenotype, suggesting that full-length PrePL and Pc both function in fungal development. PrePL targeted to the mitochondria undergoes hydrolysis by Lon to produce Pc, which accumulates in the fungal apoplast. Importantly, recombinant Pc induced plant defence responses and cell death after being infiltrated into selected plant leaves, indicating that it functions as an avirulence factor. This work thus reveals a novel pathogenic factor in the fungal Lon-mediated pathway. Additionally, our results provide new insight into the functions of a full-length protein and its cleaved isoform in fungal pathogenesis.
ATP 依赖的 Lon 蛋白酶通过调控 III 型分泌系统的表达在细菌发病机制中发挥作用;然而,关于 Lon 蛋白酶如何调控真菌发病机制知之甚少。我们之前研究了 Lon 结合蛋白在真菌发病机制中的作用,这些蛋白与 PrePL 相互作用,PrePL 是最小的稻瘟病菌 Lon 结合蛋白。在这里,我们显示 Lon 切割 PrePL 并产生 Pc,一种具有过氧化氢酶和过氧化物酶活性的 11 kDa 细胞外同工型。ΔPrePL 功能丧失菌株表现出更强的孢子形成和加速的疾病发展,表明 PrePL 在疾病进展中存在时间特异性的负调控机制。缺失 Lon 切割位点的截短 Pc 或全长 PrePL 均不能弥补ΔPrePL 表型,这表明全长 PrePL 和 Pc 都在真菌发育中发挥作用。Lon 水解靶向线粒体的 PrePL 以产生 Pc,Pc 在真菌质外体中积累。重要的是,重组 Pc 在渗透到选定的植物叶片后会引发植物防御反应和细胞死亡,表明其作为一种无毒因子发挥作用。因此,这项工作揭示了真菌 Lon 介导途径中的一种新的致病因子。此外,我们的研究结果为全长蛋白及其切割同工型在真菌发病机制中的功能提供了新的见解。