Suppr超能文献

打破循环分析中的循环:扁平化平均方法的模拟和形式化处理。

Breaking the circularity in circular analyses: Simulations and formal treatment of the flattened average approach.

机构信息

School of Computing, University of Kent, Kent, United Kingdom.

School of Psychology, University of Birmingham, Birmingham, United Kingdom.

出版信息

PLoS Comput Biol. 2020 Nov 23;16(11):e1008286. doi: 10.1371/journal.pcbi.1008286. eCollection 2020 Nov.

Abstract

There has been considerable debate and concern as to whether there is a replication crisis in the scientific literature. A likely cause of poor replication is the multiple comparisons problem. An important way in which this problem can manifest in the M/EEG context is through post hoc tailoring of analysis windows (a.k.a. regions-of-interest, ROIs) to landmarks in the collected data. Post hoc tailoring of ROIs is used because it allows researchers to adapt to inter-experiment variability and discover novel differences that fall outside of windows defined by prior precedent, thereby reducing Type II errors. However, this approach can dramatically inflate Type I error rates. One way to avoid this problem is to tailor windows according to a contrast that is orthogonal (strictly parametrically orthogonal) to the contrast being tested. A key approach of this kind is to identify windows on a fully flattened average. On the basis of simulations, this approach has been argued to be safe for post hoc tailoring of analysis windows under many conditions. Here, we present further simulations and mathematical proofs to show exactly why the Fully Flattened Average approach is unbiased, providing a formal grounding to the approach, clarifying the limits of its applicability and resolving published misconceptions about the method. We also provide a statistical power analysis, which shows that, in specific contexts, the fully flattened average approach provides higher statistical power than Fieldtrip cluster inference. This suggests that the Fully Flattened Average approach will enable researchers to identify more effects from their data without incurring an inflation of the false positive rate.

摘要

关于科学文献中是否存在复制危机,已经有了相当多的争论和关注。复制效果不佳的一个可能原因是多重比较问题。在 M/EEG 环境中,这种问题的一个重要表现形式是事后对分析窗口(也称为感兴趣区域,ROI)进行定制,以适应收集数据中的地标。对 ROI 进行事后定制是因为它允许研究人员适应实验间的变异性,并发现超出先前先例定义窗口的新差异,从而减少第二类错误。然而,这种方法会极大地增加第一类错误率。避免这个问题的一种方法是根据与正在测试的对比正交(严格参数正交)的对比来定制窗口。这种方法的一个关键途径是在完全展开的平均值上识别窗口。基于模拟,这种方法在许多情况下被认为是对分析窗口进行事后定制的安全方法。在这里,我们进一步进行了模拟和数学证明,以准确说明为什么完全展开平均值方法是无偏的,为该方法提供了正式的基础,澄清了其适用性的限制,并解决了关于该方法的已发表的误解。我们还提供了一个统计功效分析,表明在特定情况下,完全展开平均值方法比 Fieldtrip 集群推断提供了更高的统计功效。这表明,完全展开平均值方法将使研究人员能够从他们的数据中识别更多的效果,而不会增加假阳性率的膨胀。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8def/7721178/14ee0b504950/pcbi.1008286.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验