Suppr超能文献

潜水哺乳动物的生理弹性:利用克氏原理理解 COVID-19 症状的缺氧保护作用。

Physiological resiliency in diving mammals: Insights on hypoxia protection using the Krogh principle to understand COVID-19 symptoms.

机构信息

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.

Department of Marine Biology, Texas A&M University, Galveston, TX, USA.

出版信息

Comp Biochem Physiol A Mol Integr Physiol. 2021 Mar;253:110849. doi: 10.1016/j.cbpa.2020.110849. Epub 2020 Nov 21.

Abstract

Sequential diving by wild marine mammals results in a lifetime of rapid physiological transitions between lung collapse-reinflation, bradycardia-tachycardia, vasoconstriction-vasodilation, and oxygen store depletion-restoration. The result is a cycle of normoxia and hypoxia in which blood oxygen partial pressures can decline to <20-30 mmHg during a dive, a level considered injurious to oxygen-dependent human tissues (i.e., brain, heart). Safeguards in the form of enhanced on-board oxygen stores, selective oxygen transport, and unique tissue buffering capacities enable marine-adapted mammals to maintain physiological homeostasis and energy metabolism even when breathing and pulmonary gas exchange cease. This stands in stark contrast to the vulnerability of oxygen-sensitive tissues in humans that may undergo irreversible damage within minutes of ischemia and tissue hypoxia. Recently, these differences in protection against hypoxic injury have become evident in the systemic, multi-organ physiological failure during COVID-19 infection in humans. Prolonged recoveries in some patients have led to delays in the return to normal exercise levels and cognitive function even months later. Rather than a single solution to this problem, we find that marine mammals rely on a unique, integrative assemblage of protections to avoid the deleterious impacts of hypoxia on tissues. Built across evolutionary time, these solutions provide a natural template for identifying the potential for tissue damage when oxygen is lacking, and for guiding management decisions to support oxygen-deprived tissues in other mammalian species, including humans, challenged by hypoxia.

摘要

海洋哺乳动物的连续潜水会导致其一生在肺萎陷-复张、心动过缓-心动过速、血管收缩-血管舒张以及氧气储存耗竭-恢复之间快速转换。结果是一个正常氧合和缺氧的循环,在潜水过程中,血液氧分压可降至<20-30mmHg,这被认为对依赖氧的人体组织(即大脑、心脏)是有害的。船上氧气储存的增加、选择性氧气输送和独特的组织缓冲能力等保护措施使海洋适应哺乳动物即使在呼吸和肺气体交换停止时,也能维持生理内稳态和能量代谢。这与人类易受氧气影响的组织的脆弱性形成鲜明对比,人类组织在缺氧和组织缺氧几分钟内可能会发生不可逆转的损伤。最近,在人类 COVID-19 感染期间,全身性多器官生理衰竭中,这些对缺氧损伤的保护差异变得明显。一些患者的长时间恢复导致他们在数月后仍难以恢复到正常的运动水平和认知功能。我们发现,海洋哺乳动物并没有单一的解决方案来解决这个问题,而是依赖于一组独特的、综合的保护措施来避免缺氧对组织的有害影响。这些解决方案是在进化过程中建立的,为确定在缺氧时组织受损的可能性以及为指导管理决策提供了天然模板,以支持包括人类在内的其他受缺氧挑战的哺乳动物缺氧组织。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1983/8711794/068040e948ec/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验