Suppr超能文献

一种双技术方法:用于 spp. 质量控制的手持式近红外光谱仪和卷积神经网络

A Dual-Technology Approach: Handheld NIR Spectrometer and CNN for spp. Quality Control.

作者信息

Li Fengling, Lei Wen, Li Juan, Wang Xiaoting, Su Jingyu, Sahati Tangnuer, Aierkenjiang Xiahenazi, Tian Ruyi, Zhou Weihong, Zhang Jixiong, Xia Jingjing

机构信息

College of Life Science and Technology & School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.

Institute of Agro-Products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.

出版信息

Foods. 2025 May 28;14(11):1907. doi: 10.3390/foods14111907.

Abstract

spp. has an extremely high edible and medicinal value. Different parts of it exhibit significant variations in medicinal efficacy. To rapidly and accurately identify the origin and adulteration of spp., a handheld near-infrared spectrometer was combined with a convolutional neural network (CNN) to establish an efficient and convenient quality assessment method. First, for the origin of spp., the CNN could achieve high accuracy, with 100 ± 0%. The features contributing to the origin of spp. were visualized using gradient-weighted class activation mapping (Grad-CAM). For the adulteration of spp., compared with partial least squares regression (PLSR), the CNN yielded the best performance, with the R of the test set being 0.9897. Additionally, to improve the interpretability of the adulteration model, a CNN model was established using data whose dimensions had been reduced by PCA (PCA-CNN), which also achieved an R of 0.9876. The features extracted by PCA focused on 1400-1500 nm, which was consistent with Grad-CAM. The visualization of Grad-CAM and the adulteration detection model achieved mutual validation, showing the effectiveness of both methods in analyzing the samples. The experimental results demonstrated that the integration of a handheld near-infrared spectrometer with a CNN enabled both reliable authentication of spp. geographical origins and quantitative determination of adulteration levels, establishing a novel analytical framework for rapid quality evaluation of spp. materials.

摘要

某物种具有极高的食用和药用价值。其不同部位的药用功效存在显著差异。为了快速准确地鉴定该物种的产地和掺假情况,将手持式近红外光谱仪与卷积神经网络(CNN)相结合,建立了一种高效便捷的质量评估方法。首先,对于该物种的产地,CNN能够实现高精度,准确率为100±0%。使用梯度加权类激活映射(Grad-CAM)对有助于该物种产地的特征进行了可视化。对于该物种的掺假情况,与偏最小二乘回归(PLSR)相比,CNN表现最佳,测试集的R值为0.9897。此外,为了提高掺假模型的可解释性,使用主成分分析(PCA)降维后的数据建立了一个CNN模型(PCA-CNN),其R值也达到了0.9876。PCA提取的特征集中在1400 - 1500 nm,这与Grad-CAM一致。Grad-CAM的可视化和掺假检测模型实现了相互验证,表明两种方法在分析样品方面均有效。实验结果表明,手持式近红外光谱仪与CNN的结合能够可靠地鉴定该物种的地理来源并定量测定掺假水平,为该物种材料的快速质量评估建立了一个新的分析框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b91/12154058/a1cd2db3605a/foods-14-01907-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验