School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459.
Centre for Antimicrobial Bioengineering, Nanyang Technological University, Singapore 637459.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31376-31385. doi: 10.1073/pnas.2011024117. Epub 2020 Nov 23.
For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.
由于诸多不同的原因,大多数抗菌肽 (AMPs) 未能应用于临床。不同的 AMP 有不同的缺点,包括但不限于毒性问题、效力、活性谱有限或原位活性降低。我们合成了几种阳离子肽模拟物,主链阳离子聚咪唑啉 (PIMs),并发现尽管某些 PIM 显示出很少的急性哺乳动物细胞毒性,但它们是有效的广谱抗生素,对甚至泛抗生素耐药的革兰氏阳性和革兰氏阴性细菌以及分枝杆菌都有活性。我们选择了一种特别有效的 PIM1 进行机制研究。我们的实验表明,PIM1 通过疏水性和静电相互作用结合细菌细胞膜,进入细胞,并最终杀死细菌。与阳离子 AMP 如多粘菌素 (CST) 不同,PIM1 不会使细胞膜通透性增加。我们表明,膜电势是 PIM1 活性所必需的。在革兰氏阳性菌的实验室进化实验中,我们获得了对 PIM1 具有抗性的分离株,其中大多数分离株具有menaquinone 突变,我们发现靶向menaquinone 突变也赋予了 PIM1 抗性。在类似的革兰氏阴性病原体实验中,没有出现 PIM1 抗性突变体。尽管 PIM1 作为局部制剂有效,但 PIM1 在小鼠中的腹腔给药显示出一些毒性。我们合成了一种 PIM1 衍生物 PIM1D,它比 PIM1 疏水性更小。PIM1D 没有表现出毒性的证据,但保留了抗菌活性,并在小鼠败血症感染中显示出疗效。我们的证据表明,PIMs 有可能成为治疗泛耐药细菌感染的新药候选物。