Suppr超能文献

基于荧光的光化学氧传感器:氧光极的理论与发展

Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes.

作者信息

Opitz N, Lübbers D W

出版信息

Int Anesthesiol Clin. 1987 Fall;25(3):177-97. doi: 10.1097/00004311-198702530-00011.

Abstract

As the preceding considerations concerning the physical and technical features of oxygen optodes have demonstrated, fluorescence-based optochemical oxygen sensors possess certain advantages and peculiarities compared to conventionally applied electrochemical sensors such as polarographic oxygen electrodes. First, in contrast to oxygen electrodes, oxygen measurements with oxygen optodes do not suffer from distortions caused by the reference electrodes. In addition, because of the polarographic process, platinum electrodes continuously consume oxygen, which falsifies the results, especially when small sample volumes or long-term measurements, or both, are involved, whereas the sensor layer of oxygen optodes must only be equilibrated. Moreover, the surface of the platinum wire has to be catalytically clean in order to obtain a plateau of the polarogram and, consequently, to achieve a low rest current at zero PO2. Unfortunately, the demand for catalytically clean platinum surfaces turns out to be rather critical, since surface contamination occurs even with membranized electrodes, resulting in the well-known phenomenon of "electrode poisoning." The question of the specificity of oxygen electrodes also must be considered. In this context, CO2 and halothane may interfere with oxygen measurements, whereas fluorescence quenching is unaffected by CO2 and halothane affects the measurements only slightly, depending on the special indicator used. Furthermore, because of the flow dependence, oxygen measurements with the oxygen electrode show a distinct "stirring effect" caused by the turbulence in front of the electrode, which disturbs the diffusion field. Because of the completely different physical principle of fluorescence optical sensors, such influences are not observed with oxygen optodes. In addition, isolation and shielding of electrical circuits found in electrodes are not necessary for optodes. Furthermore, the sensitivity of oxygen optodes can be tuned to the desired range of PO2 values, resulting in a higher resolution. Use of suitable polymer alloys as indicator matrices can even enhance oxygen sensitivity; therefore, the application of optodes for trace analysis of oxygen might be possible, especially with regard to the application of highly oxygen-sensitive phosphorescent indicators. Finally, owing to the reversibility of fluorescence quenching, monitoring of oxygen by fluorescence optical sensors allows a continuous and remote control of biomedical parameters as well as regulation of biotechnological processes.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

正如之前关于氧光极的物理和技术特性的讨论所表明的,与传统应用的电化学传感器(如极谱氧电极)相比,基于荧光的光化学氧传感器具有某些优势和特点。首先,与氧电极不同,使用氧光极进行氧测量不会受到参比电极引起的失真影响。此外,由于极谱过程,铂电极会持续消耗氧气,这会使结果失真,尤其是在涉及小样本体积或长期测量,或两者兼而有之时,而氧光极的传感层只需达到平衡即可。而且,铂丝表面必须进行催化清洁,以获得极谱图的平稳段,并因此在零氧分压时实现低的静止电流。不幸的是,对催化清洁铂表面的要求相当苛刻,因为即使是带有膜的电极也会出现表面污染,导致众所周知的“电极中毒”现象。氧电极的特异性问题也必须加以考虑。在这种情况下,二氧化碳和氟烷可能会干扰氧测量,而荧光猝灭不受二氧化碳影响,氟烷对测量的影响也很小,这取决于所使用的特定指示剂。此外,由于对流量的依赖性,使用氧电极进行氧测量时会因电极前方的湍流而出现明显的“搅拌效应”,这会扰乱扩散场。由于荧光光学传感器的物理原理完全不同,氧光极不会出现此类影响。另外,光极无需像电极那样对电路进行隔离和屏蔽。此外,氧光极的灵敏度可以调整到所需的氧分压值范围,从而实现更高的分辨率。使用合适的聚合物合金作为指示剂基质甚至可以提高氧灵敏度;因此,光极有可能用于氧的痕量分析,特别是对于应用高氧敏感性磷光指示剂而言。最后,由于荧光猝灭的可逆性,通过荧光光学传感器监测氧可以对生物医学参数进行连续和远程控制,以及对生物技术过程进行调节。(摘要截选至400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验