Suppr超能文献

糖尿病前期风险分类算法 颈动脉体与K均值聚类技术。

Prediabetes risk classification algorithm carotid bodies and K-means clustering technique.

作者信息

Pinheiro Rafael F, Guarino Maria P, Lages Marlene, Fonseca-Pinto Rui

机构信息

Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences (ESSLei), Polytechnic University of Leiria, Leiria, Leiria, Portugal.

出版信息

PeerJ Comput Sci. 2025 Jan 20;11:e2516. doi: 10.7717/peerj-cs.2516. eCollection 2025.

Abstract

Diabetes is a disease that affects millions of people in the world and its early screening prevents serious health problems, also providing relief in the demand for healthcare services. In the search for methods to support early diagnosis, this article introduces a novel prediabetes risk classification algorithm (PRCA) for type-2 diabetes mellitus (T2DM), utilizing the chemosensitivity of carotid bodies (CB) and K-means clustering technique from the field of machine learning. Heart rate (HR) and respiratory rate (RR) data from eight volunteers with prediabetes and 25 without prediabetes were analyzed. Data were collected in basal conditions and after stimulation of the CBs by inhalation of 100% of oxygen and after ingestion of a standardized meal. During the analysis, a greater variability of groups was observed in people with prediabetes compared to the control group, particularly after inhalation of oxygen. The algorithm developed from these results showed an accuracy of 86% in classifying for prediabetes. This approach, centered on CB chemosensitivity deregulation in early disease stages, offers a nuanced detection method beyond conventional techniques. Moreover, the adaptable algorithm and clustering methodology hold promise as risk classifications for other diseases. Future endeavors aim to validate the algorithm through longitudinal studies tracking disease development among volunteers and expand the study's scope to include a larger participant pool.

摘要

糖尿病是一种影响全球数百万人的疾病,其早期筛查可预防严重的健康问题,还能缓解医疗服务需求。在寻找支持早期诊断的方法时,本文介绍了一种用于2型糖尿病(T2DM)的新型糖尿病前期风险分类算法(PRCA),该算法利用了颈动脉体(CB)的化学敏感性以及机器学习领域的K均值聚类技术。分析了8名糖尿病前期志愿者和25名非糖尿病前期志愿者的心率(HR)和呼吸频率(RR)数据。数据是在基础条件下、吸入100%氧气刺激颈动脉体后以及摄入标准化餐后收集的。在分析过程中,与对照组相比,糖尿病前期患者的组间变异性更大,尤其是在吸入氧气后。根据这些结果开发的算法在糖尿病前期分类中的准确率为86%。这种以疾病早期阶段CB化学敏感性失调为中心的方法,提供了一种超越传统技术的细致检测方法。此外,这种适应性算法和聚类方法有望用于其他疾病的风险分类。未来的努力旨在通过跟踪志愿者疾病发展的纵向研究来验证该算法,并扩大研究范围以纳入更多参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee06/11784710/f9feb3a0ccf9/peerj-cs-11-2516-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验