Suppr超能文献

蜘蛛毒素以高亲和力将钠离子通道 1.7 亚型捕获于静息状态的结构基础

Structural Basis for High-Affinity Trapping of the Na1.7 Channel in Its Resting State by Tarantula Toxin.

机构信息

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.

出版信息

Mol Cell. 2021 Jan 7;81(1):38-48.e4. doi: 10.1016/j.molcel.2020.10.039. Epub 2020 Nov 23.

Abstract

Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaAb with voltage-shifting mutations and the toxin-binding site of human Na1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.

摘要

电压门控钠离子通道引发电信号,并且经常成为致命的门控调节剂神经毒素的靶标,包括狼蛛毒素,其将电压传感器捕获在其静止状态。由于难以捕获毒素通道复合物的功能相关形式,因此狼蛛毒素作用的结构基础仍然难以捉摸。在这里,我们设计了具有电压移位突变和人类 Na1.7 的毒素结合位点的模型钠离子通道 NaAb,Na1.7 是一个有吸引力的疼痛靶标。这种突变嵌合体使我们能够确定由狼蛛毒素功能阻断的通道的低温电子显微镜(cryo-EM)结构。我们的结构揭示了关键赖氨酸残基与作为“毒刺”并穿透电压传感器的 S3-S4 连接体中的三联羧基之间的高亲和力静止状态特异性毒素通道相互作用。通过揭示这种高亲和力结合模式,我们的研究为虎纹捕鸟蛛毒素-IV 建立了一个高分辨率的通道对接和静止状态锁定机制,并为开发未来的静止状态靶向镇痛药提供了指导。

相似文献

1
Structural Basis for High-Affinity Trapping of the Na1.7 Channel in Its Resting State by Tarantula Toxin.
Mol Cell. 2021 Jan 7;81(1):38-48.e4. doi: 10.1016/j.molcel.2020.10.039. Epub 2020 Nov 23.
2
Comprehensive engineering of the tarantula venom peptide huwentoxin-IV to inhibit the human voltage-gated sodium channel hNa1.7.
J Biol Chem. 2020 Jan 31;295(5):1315-1327. doi: 10.1074/jbc.RA119.011318. Epub 2019 Dec 23.
5
Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell. 2019 Feb 7;176(4):702-715.e14. doi: 10.1016/j.cell.2018.12.018. Epub 2019 Jan 17.
9
Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.
Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.

引用本文的文献

3
Structural basis of inhibition of human Na1.8 by the tarantula venom peptide Protoxin-I.
Nat Commun. 2025 Feb 7;16(1):1459. doi: 10.1038/s41467-024-55764-z.
4
Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels.
iScience. 2024 Aug 23;27(9):110678. doi: 10.1016/j.isci.2024.110678. eCollection 2024 Sep 20.
5
Structural basis of inhibition of human Na1.8 by the tarantula venom peptide Protoxin-I.
bioRxiv. 2024 Aug 28:2024.08.27.609828. doi: 10.1101/2024.08.27.609828.
7
A Novel Antigen Design Strategy to Isolate Single-Domain Antibodies that Target Human Nav1.7 and Reduce Pain in Animal Models.
Adv Sci (Weinh). 2024 Oct;11(40):e2405432. doi: 10.1002/advs.202405432. Epub 2024 Aug 29.
8
Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery.
Physiology (Bethesda). 2025 Jan 1;40(1):0. doi: 10.1152/physiol.00029.2024. Epub 2024 Aug 27.
9
The chemistry of electrical signaling in sodium channels from bacteria and beyond.
Cell Chem Biol. 2024 Aug 15;31(8):1405-1421. doi: 10.1016/j.chembiol.2024.07.010.
10
Structural biology and molecular pharmacology of voltage-gated ion channels.
Nat Rev Mol Cell Biol. 2024 Nov;25(11):904-925. doi: 10.1038/s41580-024-00763-7. Epub 2024 Aug 5.

本文引用的文献

1
Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na channels in nanodisc.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):14187-14193. doi: 10.1073/pnas.1922903117. Epub 2020 Jun 8.
2
Structure of the Cardiac Sodium Channel.
Cell. 2020 Jan 9;180(1):122-134.e10. doi: 10.1016/j.cell.2019.11.041. Epub 2019 Dec 19.
3
Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel.
Cell. 2019 Aug 8;178(4):993-1003.e12. doi: 10.1016/j.cell.2019.06.031. Epub 2019 Jul 25.
4
Structural insight into TRPV5 channel function and modulation.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8869-8878. doi: 10.1073/pnas.1820323116. Epub 2019 Apr 11.
5
Structures of human Na1.7 channel in complex with auxiliary subunits and animal toxins.
Science. 2019 Mar 22;363(6433):1303-1308. doi: 10.1126/science.aaw2493. Epub 2019 Feb 14.
6
Molecular basis for pore blockade of human Na channel Na1.2 by the μ-conotoxin KIIIA.
Science. 2019 Mar 22;363(6433):1309-1313. doi: 10.1126/science.aaw2999. Epub 2019 Feb 14.
7
Structural Basis of Nav1.7 Inhibition by a Gating-Modifier Spider Toxin.
Cell. 2019 Feb 7;176(4):702-715.e14. doi: 10.1016/j.cell.2018.12.018. Epub 2019 Jan 17.
8
Structure of the human voltage-gated sodium channel Na1.4 in complex with β1.
Science. 2018 Oct 19;362(6412). doi: 10.1126/science.aau2486. Epub 2018 Sep 6.
9
Mechanism of calmodulin inactivation of the calcium-selective TRP channel TRPV6.
Sci Adv. 2018 Aug 15;4(8):eaau6088. doi: 10.1126/sciadv.aau6088. eCollection 2018 Aug.
10
TEM, user-friendly software for single-particle image processing.
Elife. 2018 Mar 7;7:e35383. doi: 10.7554/eLife.35383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验