Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
Mol Cell. 2021 Jan 7;81(1):38-48.e4. doi: 10.1016/j.molcel.2020.10.039. Epub 2020 Nov 23.
Voltage-gated sodium channels initiate electrical signals and are frequently targeted by deadly gating-modifier neurotoxins, including tarantula toxins, which trap the voltage sensor in its resting state. The structural basis for tarantula-toxin action remains elusive because of the difficulty of capturing the functionally relevant form of the toxin-channel complex. Here, we engineered the model sodium channel NaAb with voltage-shifting mutations and the toxin-binding site of human Na1.7, an attractive pain target. This mutant chimera enabled us to determine the cryoelectron microscopy (cryo-EM) structure of the channel functionally arrested by tarantula toxin. Our structure reveals a high-affinity resting-state-specific toxin-channel interaction between a key lysine residue that serves as a "stinger" and penetrates a triad of carboxyl groups in the S3-S4 linker of the voltage sensor. By unveiling this high-affinity binding mode, our studies establish a high-resolution channel-docking and resting-state locking mechanism for huwentoxin-IV and provide guidance for developing future resting-state-targeted analgesic drugs.
电压门控钠离子通道引发电信号,并且经常成为致命的门控调节剂神经毒素的靶标,包括狼蛛毒素,其将电压传感器捕获在其静止状态。由于难以捕获毒素通道复合物的功能相关形式,因此狼蛛毒素作用的结构基础仍然难以捉摸。在这里,我们设计了具有电压移位突变和人类 Na1.7 的毒素结合位点的模型钠离子通道 NaAb,Na1.7 是一个有吸引力的疼痛靶标。这种突变嵌合体使我们能够确定由狼蛛毒素功能阻断的通道的低温电子显微镜(cryo-EM)结构。我们的结构揭示了关键赖氨酸残基与作为“毒刺”并穿透电压传感器的 S3-S4 连接体中的三联羧基之间的高亲和力静止状态特异性毒素通道相互作用。通过揭示这种高亲和力结合模式,我们的研究为虎纹捕鸟蛛毒素-IV 建立了一个高分辨率的通道对接和静止状态锁定机制,并为开发未来的静止状态靶向镇痛药提供了指导。