Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan.
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Nucleic Acids Res. 2020 Dec 16;48(22):12648-12659. doi: 10.1093/nar/gkaa1050.
Eukaryotic transcription is epigenetically regulated by chromatin structure and post-translational modifications (PTMs). For example, lysine acetylation in histone H4 is correlated with activation of RNA polymerase I-, II- and III-driven transcription from chromatin templates, which requires prior chromatin remodeling. However, quantitative understanding of the contribution of particular PTM states to the sequential steps of eukaryotic transcription has been hampered partially because reconstitution of a chromatin template with designed PTMs is difficult. In this study, we reconstituted a di-nucleosome with site-specifically acetylated or unmodified histone H4, which contained two copies of the Xenopus somatic 5S rRNA gene with addition of a unique sequence detectable by hybridization-assisted fluorescence correlation spectroscopy. Using a Xenopus oocyte nuclear extract, we analyzed the time course of accumulation of nascent 5S rRNA-derived transcripts generated on chromatin templates in vitro. Our mathematically described kinetic model and fitting analysis revealed that tetra-acetylation of histone H4 at K5/K8/K12/K16 increases the rate of transcriptionally competent chromatin formation ∼3-fold in comparison with the absence of acetylation. We provide a kinetic model for quantitative evaluation of the contribution of epigenetic modifications to chromatin transcription.
真核生物转录受染色质结构和翻译后修饰(PTMs)的表观遗传调控。例如,组蛋白 H4 中的赖氨酸乙酰化与 RNA 聚合酶 I、II 和 III 驱动的从染色质模板转录的激活相关,这需要预先进行染色质重塑。然而,由于用设计的 PTM 重建染色质模板具有一定的难度,因此,对特定 PTM 状态对真核转录的连续步骤的贡献的定量理解受到了部分阻碍。在这项研究中,我们使用杂交辅助荧光相关光谱法可检测到的独特序列,在含有两个 Xenopus 体细胞 5S rRNA 基因拷贝的二核小体上重新构建了具有特异性乙酰化或未修饰组蛋白 H4 的二核小体。使用 Xenopus 卵母细胞核提取物,我们分析了体外在染色质模板上生成的新生 5S rRNA 衍生转录物的积累的时程。我们描述的数学模型和拟合分析表明,与没有乙酰化相比,组蛋白 H4 的 K5/K8/K12/K16 四乙酰化将转录活性染色质形成的速率提高了约 3 倍。我们提供了一个用于定量评估表观遗传修饰对染色质转录贡献的动力学模型。