文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

虾类水产养殖中传染病预防的表观遗传调控。

Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture.

机构信息

Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea.

出版信息

Genes (Basel). 2023 Aug 25;14(9):1682. doi: 10.3390/genes14091682.


DOI:10.3390/genes14091682
PMID:37761822
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10531180/
Abstract

Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.

摘要

水产养殖在满足全球不断增长的粮食需求方面发挥着关键作用,特别是虾养殖在全球经济和粮食安全中发挥着重要作用,为人类提供了丰富的营养来源。然而,该行业面临着巨大的挑战,主要归因于疾病爆发和传统疾病管理方法(如抗生素使用)效果的降低。因此,迫切需要探索替代策略来确保该行业的可持续性。在这种情况下,表观遗传学领域作为虾类水产养殖中防治传染病的一种有前途的方法出现了。表观遗传修饰涉及 DNA 和蛋白质的化学改变,通过 DNA 甲基化、组蛋白修饰和非编码 RNA 分子,在不改变基础 DNA 序列的情况下调节基因表达模式。利用表观遗传机制为增强虾的免疫基因表达和增强抗病能力提供了机会,从而有助于疾病管理策略和优化虾的健康和生产力。此外,海洋动物中表观遗传可遗传性的概念为虾养殖行业的未来提供了巨大的潜力。为此,本综述全面探讨了虾类水产养殖中表观遗传修饰的动态,特别强调了其在疾病管理中的关键作用。它传达了利用有利的表观遗传变化来确保虾养殖长期生存能力的重要性,同时考虑了这些干预措施的潜在后果。总的来说,这一评估突出了表观遗传应用的有希望的轨迹,推动该领域朝着加强虾类水产养殖的可持续性方向发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/97ba7d1df39f/genes-14-01682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/a26b0a8e980c/genes-14-01682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/d83fb67cadc8/genes-14-01682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/22060a259977/genes-14-01682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/5014d9f19f4a/genes-14-01682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/97ba7d1df39f/genes-14-01682-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/a26b0a8e980c/genes-14-01682-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/d83fb67cadc8/genes-14-01682-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/22060a259977/genes-14-01682-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/5014d9f19f4a/genes-14-01682-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49de/10531180/97ba7d1df39f/genes-14-01682-g003.jpg

相似文献

[1]
Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture.

Genes (Basel). 2023-8-25

[2]
Immunostimulants for shrimp aquaculture: paving pathway towards shrimp sustainability.

Environ Sci Pollut Res Int. 2023-2

[3]
A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming.

Fish Shellfish Immunol. 2024-4

[4]
Disease will limit future food supply from the global crustacean fishery and aquaculture sectors.

J Invertebr Pathol. 2012-3-14

[5]
Application of proteomics in shrimp and shrimp aquaculture.

Comp Biochem Physiol Part D Genomics Proteomics. 2022-9

[6]
RNAi-Based Therapy: Combating Shrimp Viral Diseases.

Viruses. 2023-10-5

[7]
Antimicrobials in shrimp aquaculture in the United States: regulatory status and safety concerns.

Rev Environ Contam Toxicol. 1994

[8]
Viral Shrimp Diseases Listed by the OIE: A Review.

Viruses. 2022-3-12

[9]
Historic emergence, impact and current status of shrimp pathogens in the Americas.

J Invertebr Pathol. 2012-3-13

[10]
Issues, Impacts, and Implications of Shrimp Aquaculture in Thailand.

Environ Manage. 1996-9

引用本文的文献

[1]
Epigenetic horizons in aquaculture: unlocking sustainable fish production.

Fish Physiol Biochem. 2025-9-5

[2]
The Role of Natural Antimicrobials in Reducing the Virulence of TPD in Shrimp Gut and Hepatopancreas Primary Cells and in a Post-Larvae Challenge Trial.

Int J Mol Sci. 2025-7-8

[3]
Quorum quenching of phenolic compounds from Leptolyngbya spp. MACC 32 via downregulation of the periplasmic receptor LuxP in Vibrio harveyi: Hinting a putative mechanism.

World J Microbiol Biotechnol. 2025-6-27

[4]
DNA methylation regulates growth traits by influencing metabolic pathways in Pacific white shrimp (Litopenaeus vannamei).

BMC Genomics. 2025-5-20

本文引用的文献

[1]
Full-Length Transcriptomes and Sex-Based Differentially Expressed Genes in the Brain and Ganglia of Giant River Prawn .

Biomolecules. 2023-3-2

[2]
The potential regulatory role of the lncRNA-miRNA-mRNA axis in teleost fish.

Front Immunol. 2023

[3]
Comparative study on the effects of crystalline L-methionine and methionine hydroxy analogue calcium supplementations in the diet of juvenile Pacific white shrimp ().

Front Physiol. 2023-1-30

[4]
Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species.

Nat Commun. 2023-1-16

[5]
DL-methionyl-DL-methionine as an efficient methionine source for promoting zootechnical performance and methionine-related pathways in the whiteleg shrimp ().

Br J Nutr. 2023-8-28

[6]
Identification and functional characterization of a gene in .

Fish Shellfish Immunol Rep. 2021-11-11

[7]
Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture.

Front Genet. 2022-11-2

[8]
CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn .

Front Endocrinol (Lausanne). 2022

[9]
Optical Control of MicroRNA Function in Zebrafish Embryos.

J Am Chem Soc. 2022-9-21

[10]
Shrimp genome sequence contains independent clusters of ancient and current Endogenous Viral Elements (EVE) of the parvovirus IHHNV.

BMC Genomics. 2022-8-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索