Suppr超能文献

利用定量 MRI 校准肿瘤生长和血管生成的预测模型。

Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI.

机构信息

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, POB 4.102, 1 University Station (C0200), Austin, TX, 78712-1229, USA.

Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.

出版信息

Ann Biomed Eng. 2019 Jul;47(7):1539-1551. doi: 10.1007/s10439-019-02262-9. Epub 2019 Apr 8.

Abstract

The spatiotemporal variations in tumor vasculature inevitably alters cell proliferation and treatment efficacy. Thus, rigorous characterization of tumor dynamics must include a description of this phenomenon. We have developed a family of biophysical models of tumor growth and angiogenesis that are calibrated with diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast-enhanced (DCE-) MRI data to provide individualized tumor growth forecasts. Tumor and blood volume fractions were evolved using two, coupled partial differential equations consisting of proliferation, diffusion, and death terms. To evaluate these models, rats (n = 8) with C6 gliomas were imaged seven times. The tumor volume fraction was estimated using DW-MRI, while DCE-MRI provided estimates of the blood volume fraction. The first three time points were used to calibrate model parameters, which were then used to predict growth at the remaining four time points and compared directly to the measurements. The best performing model predicted tumor growth with less than 10.3% error in tumor volume and with less than 9.4% error at the voxel-level at all prediction time points. The best performing model resulted in less than 9.3% error in blood volume at the voxel-level. This pre-clinical study demonstrates the potential for image-based, mechanistic modeling of tumor growth and angiogenesis.

摘要

肿瘤血管的时空变化不可避免地改变了细胞增殖和治疗效果。因此,严格描述肿瘤动力学必须包括对这一现象的描述。我们已经开发了一系列肿瘤生长和血管生成的生物物理模型,这些模型使用扩散加权磁共振成像 (DW-MRI) 和动态对比增强 (DCE-) MRI 数据进行校准,以提供个体化的肿瘤生长预测。肿瘤和血液体积分数使用两个耦合的偏微分方程演变,这些方程由增殖、扩散和死亡项组成。为了评估这些模型,对 8 只 C6 胶质细胞瘤大鼠进行了 7 次成像。使用 DW-MRI 估计肿瘤体积分数,而 DCE-MRI 提供血液体积分数的估计。前三个时间点用于校准模型参数,然后使用这些参数来预测剩余四个时间点的生长,并直接与测量值进行比较。表现最好的模型预测肿瘤生长的误差小于肿瘤体积的 10.3%,在所有预测时间点的体素水平上的误差小于 9.4%。表现最好的模型在体素水平上的血液体积误差小于 9.3%。这项临床前研究表明,基于图像的肿瘤生长和血管生成的机制建模具有潜力。

相似文献

引用本文的文献

本文引用的文献

9
Toward a science of tumor forecasting for clinical oncology.迈向临床肿瘤学的肿瘤预测科学。
Cancer Res. 2015 Mar 15;75(6):918-23. doi: 10.1158/0008-5472.CAN-14-2233. Epub 2015 Jan 15.
10
Quantitative multimodality imaging in cancer research and therapy.癌症研究与治疗中的定量多模态成像
Nat Rev Clin Oncol. 2014 Nov;11(11):670-80. doi: 10.1038/nrclinonc.2014.134. Epub 2014 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验