Suppr超能文献

机器学习分类识别出小脑在阿尔茨海默病早期和中度认知衰退中的作用。

Machine Learning Classification Identifies Cerebellar Contributions to Early and Moderate Cognitive Decline in Alzheimer's Disease.

作者信息

Bruchhage Muriel M K, Correia Stephen, Malloy Paul, Salloway Stephen, Deoni Sean

机构信息

Advanced Baby Imaging Lab, Hasbro Children's Hospital, Rhode Island Hospital, Providence, RI, United States.

Department of Pediatrics, Warren Alpert Medical School at Brown University, Providence, RI, United States.

出版信息

Front Aging Neurosci. 2020 Nov 3;12:524024. doi: 10.3389/fnagi.2020.524024. eCollection 2020.

Abstract

Alzheimer's disease (AD) is one of the most common forms of dementia, marked by progressively degrading cognitive function. Although cerebellar changes occur throughout AD progression, its involvement and predictive contribution in its earliest stages, as well as gray or white matter components involved, remains unclear. We used MRI machine learning-based classification to assess the contribution of two tissue components [volume fraction myelin (VFM), and gray matter (GM) volume] within the whole brain, the neocortex, the whole cerebellum as well as its anterior and posterior parts and their predictive contribution to the first two stages of AD and typically aging controls. While classification accuracy increased with AD stages, VFM was the best predictor for all early stages of dementia when compared with typically aging controls. However, we document overall higher cerebellar prediction accuracy when compared to the whole brain with distinct structural signatures of higher anterior cerebellar contribution to mild cognitive impairment (MCI) and higher posterior cerebellar contribution to mild/moderate stages of AD for each tissue property. Based on these different cerebellar profiles and their unique contribution to early disease stages, we propose a refined model of cerebellar contribution to early AD development.

摘要

阿尔茨海默病(AD)是最常见的痴呆形式之一,其特征是认知功能逐渐退化。尽管在AD进展过程中小脑会发生变化,但其在疾病最早阶段的参与情况、预测作用以及涉及的灰质或白质成分仍不明确。我们使用基于磁共振成像(MRI)机器学习的分类方法,评估全脑、新皮层、整个小脑及其前后部分中两种组织成分[髓磷脂体积分数(VFM)和灰质(GM)体积]的作用,以及它们对AD的前两个阶段和典型衰老对照组的预测作用。虽然分类准确率随AD阶段增加,但与典型衰老对照组相比,VFM是痴呆所有早期阶段的最佳预测指标。然而,我们发现,与全脑相比,小脑的总体预测准确率更高,每种组织特性对轻度认知障碍(MCI)的小脑前部贡献更高,对AD轻度/中度阶段的小脑后部贡献更高,具有明显的结构特征。基于这些不同的小脑特征及其对疾病早期阶段的独特贡献,我们提出了一个关于小脑对早期AD发展贡献的优化模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed1/7669549/ca799c88ea7d/fnagi-12-524024-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验