Suppr超能文献

磁共振弥散加权图像纹理分析鉴别三阴性乳腺癌与其他亚型的可行性研究。

Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study.

机构信息

Department of Radiology, Yantai Yuhuangding Hospital, QingDao University School of Medicine, Yantai, Shandong 264000, PR China.

Institute of medical imaging, Binzhou Medical University, Yantai, Shandong 264000, PR China.

出版信息

Clin Imaging. 2021 Apr;72:136-141. doi: 10.1016/j.clinimag.2020.11.024. Epub 2020 Nov 14.

Abstract

PURPOSE

This work aimed to explore whether radiomic features on magnetic resonance diffusion weighted image (MR DWI) can be used to identify triple-negative breast cancer (TNBC) and other subtypes (non-TNBC).

MATERIALS AND METHODS

This retrospective study included 221 unilateral patients who underwent breast MR imaging prior to neoadjuvant chemotherapy. The subtypes of breast cancer include luminal A (n = 63), luminal B (n = 103), human epidermal growth factor receptor-2 (HER2) overexpressing (n = 30), and triple negative (n = 25). Radiomic features were extracted using Omini-Kinetic software on DWI. Student's t-test and Mann-Whitney U test were used to compare the features between TNBC and non-TNBC patients. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficiency of radiomic features. The Fisher discriminant model was employed to distinguish TNBC and non-TNBC patients automatically. An additional validation dataset with 169 patients was utilized to validate the model.

RESULTS

A total of 76 imaging features were extracted from each lesion on DWI images, and 12 radiomic features were statistically significant between TNBC and non-TNBC patients (P < 0.05). The area of receiver operating characteristic curve (AUC) was 0.817 to apply logistic regression analysis. The accuracy of Fisher discriminant model in distinguishing TNBC and non-TNBC patients was 95.4%, and leave-one-out cross validation was achieved with an accuracy of 83.7%. The same classification analysis of the validation dataset showed an accuracy of 83.4% and an AUC of 0.804.

CONCLUSION

Breast lesions exhibit differences in radiomic features from DWI, enabling good discrimination between TNBC and non-TNBC tumors.

摘要

目的

本研究旨在探讨磁共振弥散加权成像(MR DWI)的放射组学特征是否可用于鉴别三阴性乳腺癌(TNBC)和其他亚型(非 TNBC)。

材料与方法

本回顾性研究纳入了 221 例接受新辅助化疗前单侧乳腺磁共振成像检查的患者。乳腺癌亚型包括 luminal A 型(n=63)、luminal B 型(n=103)、人表皮生长因子受体-2(HER2)过表达型(n=30)和三阴性型(n=25)。使用 Omini-Kinetic 软件在 DWI 上提取放射组学特征。采用 Student's t 检验和 Mann-Whitney U 检验比较 TNBC 和非 TNBC 患者之间的特征。采用 logistic 回归分析和受试者工作特征(ROC)曲线评估放射组学特征的诊断效能。采用 Fisher 判别模型自动区分 TNBC 和非 TNBC 患者。利用另外 169 例患者的验证数据集对模型进行验证。

结果

从 DWI 图像上的每个病灶中共提取了 76 个影像学特征,其中 12 个放射组学特征在 TNBC 和非 TNBC 患者之间有统计学意义(P<0.05)。logistic 回归分析的曲线下面积(AUC)为 0.817。Fisher 判别模型区分 TNBC 和非 TNBC 患者的准确率为 95.4%,留一法交叉验证准确率为 83.7%。验证数据集的相同分类分析显示准确率为 83.4%,AUC 为 0.804。

结论

乳腺病变在 DWI 的放射组学特征上存在差异,可较好地区分 TNBC 和非 TNBC 肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验