Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T, Watanabe K, Novoselov K S, Fernández-Rossier J, Tartakovskii A I
Department of Physics and Astronomy, The University of Sheffield, Sheffield, S3 7RH, UK.
QuantaLab, International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal.
Nat Commun. 2020 Nov 26;11(1):6021. doi: 10.1038/s41467-020-19816-4.
Semiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe and CrBr in photoluminescence, whereby the valley polarization of the MoSe trion state conforms closely to the local CrBr magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes. Going further, we uncover by both the magneto-optical Kerr effect and photoluminescence a domain-like spatial topography of contrasting valley polarization, which we infer to be labyrinthine or otherwise highly intricate, with features smaller than 400 nm corresponding to our optical resolution. Our findings offer a unique insight into the interplay between short-lived valley excitons and spin-dependent interlayer tunneling, while also highlighting MoSe as a promising candidate to optically interface with exotic spin textures in van der Waals structures.
范德华异质结构中的半导体铁磁体-非磁体界面为研究依赖于多种现象的磁近邻相互作用提供了独特的机会,这些现象包括能谷和层赝自旋、莫尔周期性或异常强的库仑束缚。在此,我们报道了在光致发光中MoSe和CrBr之间磁近邻效应的电荷态依赖性,其中MoSe三重激子态的能谷极化与局部CrBr磁化密切相关,而中性激子态对铁磁体不敏感。我们将此归因于在激子和三重激子辐射寿命之间的时间尺度上发生的自旋相关层间电荷转移。进一步地,我们通过磁光克尔效应和光致发光发现了具有对比能谷极化的类似畴的空间形貌,我们推断其为迷宫状或以其他方式高度复杂,其特征尺寸小于400 nm,与我们的光学分辨率相对应。我们的发现为短寿命能谷激子与自旋相关层间隧穿之间的相互作用提供了独特的见解,同时也突出了MoSe作为与范德华结构中奇异自旋纹理进行光学界面耦合的有前景候选材料。