Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Department of Sports Science and Clinical Biomechanics and the Center for Active and Healthy Ageing, University of Southern Denmark, Odense, Denmark.
Exp Gerontol. 2021 Mar;145:111172. doi: 10.1016/j.exger.2020.111172. Epub 2020 Nov 24.
Weight-bearing jump tests that measure lower-extremity muscle power may be more strongly related to physical performance measures vs. non-weight-bearing leg press power, leg press strength and grip strength. We investigated if multiple muscle function measures differentially related to standard physical performance measures.
MATERIALS/METHODS: In the Developmental Epidemiologic Cohort Study (DECOS; N = 68; age 78.5 ± 5.5 years; 57% women; 7% minorities), muscle function measures included power in Watts/kg (functional, weight-bearing: jump; mechanical: Nottingham power rig; Keiser pneumatic leg press) and strength in kg/kg body weight (Keiser pneumatic leg press; hand-held dynamometry). Physical performance outcomes included 6 m usual gait speed (m/s), usual-paced 400 m walk time (seconds), and 5-repeated chair stands speed (stands/s).
Women (N = 31; 79.8 ± 5.0 years) had lower muscle function and slower gait speed compared to men (N = 25; 78.7 ± 6.6 years), though similar 400 m walk time and chair stands speed. In partial Pearson correlations adjusted for age, sex, race and height, muscle function measures were moderately to strongly correlated with each other (all p < 0.05), though the individual correlations varied. In multiple regression analyses, each muscle function measure was statistically associated with all physical performance outcomes in models adjusted for age, sex, race, height, self-reported diabetes, self-reported peripheral vascular disease and self-reported pain in legs/feet (all p < 0.05). Jump power (β = 0.75) and grip strength (β = 0.71) had higher magnitudes of association with faster gait speed than lower-extremity power and strength measures (β range: 0.32 to 0.58). Jump power (β = 0.56) had a slightly lower magnitude of association with faster 400 m walk time vs. Keiser power (β = 0.61), and a higher magnitude of association vs. Nottingham power, Keiser strength and grip strength (β range: 0.41 to 0.47). Jump power (β = 0.38) had a lower magnitude of association with chair stands speed than any other power or strength measures (β range: 0.50 to 0.65).
Jump power/kg and grip strength/kg may be more strongly related to faster gait speed, a standard measure of physical function and vital sign related to disability and mortality in older adults, compared to leg press power/strength. However, jump power/kg had a similar magnitude of association with 400 m walk time as Keiser power/kg and a lower magnitude of association with faster chair stands speed than the other muscle function measures. Importantly, choice of muscle function measures should carefully reflect the study focus and methodologic considerations, including population.
与非负重腿推力量、腿推力量和握力相比,测量下肢肌肉力量的负重跳跃测试可能与身体表现测量更密切相关。我们研究了多种肌肉功能测量是否与标准身体表现测量有不同的关系。
材料/方法:在发育性流行病学队列研究(DECOS;N=68;年龄 78.5±5.5 岁;57%为女性;7%为少数民族)中,肌肉功能测量包括瓦特/公斤(功能性、负重:跳跃;机械:诺丁汉力量测试装置;凯瑟气动腿推)和公斤/公斤体重(凯瑟气动腿推;手持测力计)的力量。身体表现结果包括 6 米常规步行速度(米/秒)、常规 400 米步行时间(秒)和 5 次坐姿站立速度(站/秒)。
女性(N=31;79.8±5.0 岁)的肌肉功能和步行速度低于男性(N=25;78.7±6.6 岁),尽管 400 米步行时间和坐姿站立速度相似。在年龄、性别、种族和身高调整的部分 Pearson 相关分析中,肌肉功能测量之间呈中度至高度相关(均 p<0.05),尽管个体相关性有所不同。在多变量回归分析中,在调整年龄、性别、种族、身高、自我报告的糖尿病、自我报告的周围血管疾病和自我报告的腿部/脚部疼痛后,每个肌肉功能测量都与所有身体表现结果呈统计学相关(均 p<0.05)。与下肢力量和力量测量相比,跳跃力量(β=0.75)和握力(β=0.71)与更快的步行速度有更高的关联程度(β 范围:0.32 至 0.58)。跳跃力量(β=0.56)与更快的 400 米步行时间的关联程度略低于凯瑟力量(β=0.61),而与诺丁汉力量、凯瑟力量和握力的关联程度更高(β 范围:0.41 至 0.47)。跳跃力量(β=0.38)与坐姿站立速度的关联程度低于任何其他力量或力量测量(β 范围:0.50 至 0.65)。
与腿推力量/强度相比,跳跃力量/公斤和握力/公斤可能与更快的步行速度(身体功能的标准测量指标)和与残疾和死亡率相关的重要生命体征有更强的相关性。然而,与凯瑟力量/公斤相比,跳跃力量/公斤与 400 米步行时间的关联程度相似,而与更快的坐姿站立速度的关联程度低于其他肌肉功能测量。重要的是,肌肉功能测量的选择应仔细反映研究重点和方法考虑因素,包括人群。