Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
Brain. 2021 Feb 12;144(1):288-309. doi: 10.1093/brain/awaa376.
Extracellular vesicles are highly transmissible and play critical roles in the propagation of tau pathology, although the underlying mechanism remains elusive. Here, for the first time, we comprehensively characterized the physicochemical structure and pathogenic function of human brain-derived extracellular vesicles isolated from Alzheimer's disease, prodromal Alzheimer's disease, and non-demented control cases. Alzheimer's disease extracellular vesicles were significantly enriched in epitope-specific tau oligomers in comparison to prodromal Alzheimer's disease or control extracellular vesicles as determined by dot blot and atomic force microscopy. Alzheimer's disease extracellular vesicles were more efficiently internalized by murine cortical neurons, as well as more efficient in transferring and misfolding tau, than prodromal Alzheimer's disease and control extracellular vesicles in vitro. Strikingly, the inoculation of Alzheimer's disease or prodromal Alzheimer's disease extracellular vesicles containing only 300 pg of tau into the outer molecular layer of the dentate gyrus of 18-month-old C57BL/6 mice resulted in the accumulation of abnormally phosphorylated tau throughout the hippocampus by 4.5 months, whereas inoculation of an equal amount of tau from control extracellular vesicles, isolated tau oligomers, or fibrils from the same Alzheimer's disease donor showed little tau pathology. Furthermore, Alzheimer's disease extracellular vesicles induced misfolding of endogenous tau in both oligomeric and sarkosyl-insoluble forms in the hippocampal region. Unexpectedly, phosphorylated tau was primarily accumulated in glutamic acid decarboxylase 67 (GAD67) GABAergic interneurons and, to a lesser extent, glutamate receptor 2/3-positive excitatory mossy cells, showing preferential extracellular vesicle-mediated GABAergic interneuronal tau propagation. Whole-cell patch clamp recordings of CA1 pyramidal cells showed significant reduction in the amplitude of spontaneous inhibitory post-synaptic currents. This was accompanied by reductions in c-fos+ GAD67+ neurons and GAD67+ neuronal puncta surrounding pyramidal neurons in the CA1 region, confirming reduced GABAergic transmission in this region. Our study posits a novel mechanism for the spread of tau in hippocampal GABAergic interneurons via brain-derived extracellular vesicles and their subsequent neuronal dysfunction.
细胞外囊泡具有高度的传染性,在tau 病理的传播中起着关键作用,尽管其潜在机制仍不清楚。在这里,我们首次全面描述了从阿尔茨海默病、前驱期阿尔茨海默病和非痴呆对照病例中分离出的人源性脑衍生细胞外囊泡的理化结构和致病功能。与前驱期阿尔茨海默病或对照细胞外囊泡相比,阿尔茨海默病细胞外囊泡中特异性 tau 寡聚体明显富集,通过斑点印迹和原子力显微镜确定。阿尔茨海默病细胞外囊泡在体外更有效地被小鼠皮质神经元内化,并且比前驱期阿尔茨海默病和对照细胞外囊泡更有效地传递和错误折叠 tau。引人注目的是,将含有 300pg tau 的阿尔茨海默病或前驱期阿尔茨海默病细胞外囊泡接种到 18 个月大的 C57BL/6 小鼠齿状回外分子层中,在 4.5 个月时导致整个海马区异常磷酸化 tau 的积累,而接种相同数量的来自对照细胞外囊泡、相同阿尔茨海默病供体分离的 tau 寡聚体或纤维的 tau 几乎没有 tau 病理学。此外,阿尔茨海默病细胞外囊泡在海马区诱导寡聚体和 Sarkosyl 不溶性形式的内源性 tau 错误折叠。出乎意料的是,磷酸化 tau 主要积累在谷氨酸脱羧酶 67(GAD67)GABA 能中间神经元中,在较小程度上积累在谷氨酸受体 2/3 阳性兴奋性苔藓细胞中,表现出优先通过细胞外囊泡介导的 GABA 能中间神经元 tau 传播。CA1 锥体神经元的全细胞膜片钳记录显示,自发抑制性突触后电流的幅度显著降低。这伴随着 CA1 区中 c-fos+GAD67+神经元和围绕锥体神经元的 GAD67+神经元点状的减少,证实该区域 GABA 能传递减少。我们的研究提出了一种通过脑源性细胞外囊泡传播 tau 并随后导致神经元功能障碍的新机制,用于海马 GABA 能中间神经元。