Suppr超能文献

用于少视图乳腺CT图像重建的深度高效端到端重建(DEER)网络

Deep Efficient End-to-end Reconstruction (DEER) Network for Few-view Breast CT Image Reconstruction.

作者信息

Xie Huidong, Shan Hongming, Cong Wenxiang, Liu Chi, Zhang Xiaohua, Liu Shaohua, Ning Ruola, Wang G E

机构信息

Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY USA.

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.

出版信息

IEEE Access. 2020;8:196633-196646. doi: 10.1109/access.2020.3033795. Epub 2020 Oct 26.

Abstract

Breast CT provides image volumes with isotropic resolution in high contrast, enabling detection of small calcification (down to a few hundred microns in size) and subtle density differences. Since breast is sensitive to x-ray radiation, dose reduction of breast CT is an important topic, and for this purpose, few-view scanning is a main approach. In this article, we propose a Deep Efficient End-to-end Reconstruction (DEER) network for few-view breast CT image reconstruction. The major merits of our network include high dose efficiency, excellent image quality, and low model complexity. By the design, the proposed network can learn the reconstruction process with as few as parameters, where is the side length of an image to be reconstructed, which represents orders of magnitude improvements relative to the state-of-the-art deep-learning-based reconstruction methods that map raw data to tomographic images directly. Also, validated on a cone-beam breast CT dataset prepared by Koning Corporation on a commercial scanner, our method demonstrates a competitive performance over the state-of-the-art reconstruction networks in terms of image quality. The source code of this paper is available at: https://github.com/HuidongXie/DEER.

摘要

乳腺CT能以高对比度提供各向同性分辨率的图像容积,可检测出小钙化灶(尺寸小至几百微米)以及细微的密度差异。由于乳腺对X射线辐射敏感,降低乳腺CT的辐射剂量是一个重要课题,为此,少视图扫描是一种主要方法。在本文中,我们提出了一种用于少视图乳腺CT图像重建的深度高效端到端重建(DEER)网络。我们网络的主要优点包括高剂量效率、出色的图像质量和低模型复杂度。通过设计,所提出的网络能够以极少的参数学习重建过程,其中 是待重建图像的边长,这相对于直接将原始数据映射到断层图像的基于深度学习的最先进重建方法而言,代表了数量级的提升。此外,在康宁公司在商用扫描仪上准备的锥束乳腺CT数据集上进行验证时,我们的方法在图像质量方面展现出优于最先进重建网络的竞争性能。本文的源代码可在以下网址获取:https://github.com/HuidongXie/DEER

相似文献

1
Deep Efficient End-to-end Reconstruction (DEER) Network for Few-view Breast CT Image Reconstruction.
IEEE Access. 2020;8:196633-196646. doi: 10.1109/access.2020.3033795. Epub 2020 Oct 26.
2
Computationally efficient deep neural network for computed tomography image reconstruction.
Med Phys. 2019 Nov;46(11):4763-4776. doi: 10.1002/mp.13627. Epub 2019 Sep 21.
3
Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data.
Bioengineering (Basel). 2019 Dec 9;6(4):111. doi: 10.3390/bioengineering6040111.
5
Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
Med Phys. 2019 Apr;46(4):1686-1696. doi: 10.1002/mp.13415. Epub 2019 Feb 14.
9
Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics.
Acad Radiol. 2020 Jan;27(1):82-87. doi: 10.1016/j.acra.2019.09.008.
10
Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
Nat Mach Intell. 2019 Jun;1(6):269-276. doi: 10.1038/s42256-019-0057-9. Epub 2019 Jun 10.

引用本文的文献

2
Unified Noise-aware Network for Low-count PET Denoising with Varying Count Levels.
IEEE Trans Radiat Plasma Med Sci. 2024 Apr;8(4):366-378. doi: 10.1109/trpms.2023.3334105. Epub 2023 Nov 20.
3
Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.
J Med Imaging (Bellingham). 2024 May;11(3):033501. doi: 10.1117/1.JMI.11.3.033501. Epub 2024 May 15.
4
A Systematic Literature Review of 3D Deep Learning Techniques in Computed Tomography Reconstruction.
Tomography. 2023 Dec 5;9(6):2158-2189. doi: 10.3390/tomography9060169.
6
Deep-Learning-Based Few-Angle Cardiac SPECT Reconstruction Using Transformer.
IEEE Trans Radiat Plasma Med Sci. 2023 Jan;7(1):33-40. doi: 10.1109/trpms.2022.3187595. Epub 2022 Jun 30.
8
Segmentation-Free PVC for Cardiac SPECT Using a Densely-Connected Multi-Dimensional Dynamic Network.
IEEE Trans Med Imaging. 2023 May;42(5):1325-1336. doi: 10.1109/TMI.2022.3226604. Epub 2023 May 2.
9
Deep-learning-based methods of attenuation correction for SPECT and PET.
J Nucl Cardiol. 2023 Oct;30(5):1859-1878. doi: 10.1007/s12350-022-03007-3. Epub 2022 Jun 9.
10
A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery.
Dentomaxillofac Radiol. 2022 Sep 1;51(7):20210437. doi: 10.1259/dmfr.20210437. Epub 2022 May 23.

本文引用的文献

1
Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
Nat Mach Intell. 2019 Jun;1(6):269-276. doi: 10.1038/s42256-019-0057-9. Epub 2019 Jun 10.
2
Radon Inversion via Deep Learning.
IEEE Trans Med Imaging. 2020 Jun;39(6):2076-2087. doi: 10.1109/TMI.2020.2964266. Epub 2020 Jan 6.
3
Deep Encoder-Decoder Adversarial Reconstruction(DEAR) Network for 3D CT from Few-View Data.
Bioengineering (Basel). 2019 Dec 9;6(4):111. doi: 10.3390/bioengineering6040111.
4
Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety of Data Acquisition Conditions.
IEEE Trans Med Imaging. 2019 Oct;38(10):2469-2481. doi: 10.1109/TMI.2019.2910760. Epub 2019 Apr 11.
5
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
6
Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1488-1497. doi: 10.1109/TMI.2018.2820120.
7
Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems.
IEEE Trans Med Imaging. 2018 Jun;37(6):1454-1463. doi: 10.1109/TMI.2018.2833499.
8
Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.
9
LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT.
IEEE Trans Med Imaging. 2018 Jun;37(6):1333-1347. doi: 10.1109/TMI.2018.2805692.
10
Image Reconstruction is a New Frontier of Machine Learning.
IEEE Trans Med Imaging. 2018 Jun;37(6):1289-1296. doi: 10.1109/TMI.2018.2833635.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验