Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.
Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America.
PLoS Pathog. 2020 Nov 30;16(11):e1009063. doi: 10.1371/journal.ppat.1009063. eCollection 2020 Nov.
Genomic dissection of antibiotic resistance in bacterial pathogens has largely focused on genetic changes conferring growth above a single critical concentration of drug. However, reduced susceptibility to antibiotics-even below this breakpoint-is associated with poor treatment outcomes in the clinic, including in tuberculosis. Clinical strains of Mycobacterium tuberculosis exhibit extensive quantitative variation in antibiotic susceptibility but the genetic basis behind this spectrum of drug susceptibility remains ill-defined. Through a genome wide association study, we show that non-synonymous mutations in dnaA, which encodes an essential and highly conserved regulator of DNA replication, are associated with drug resistance in clinical M. tuberculosis strains. We demonstrate that these dnaA mutations specifically enhance M. tuberculosis survival during isoniazid treatment via reduced expression of katG, the activator of isoniazid. To identify DnaA interactors relevant to this phenotype, we perform the first genome-wide biochemical mapping of DnaA binding sites in mycobacteria which reveals a DnaA interaction site that is the target of recurrent mutation in clinical strains. Reconstructing clinically prevalent mutations in this DnaA interaction site reproduces the phenotypes of dnaA mutants, suggesting that clinical strains of M. tuberculosis have evolved mutations in a previously uncharacterized DnaA pathway that quantitatively increases resistance to the key first-line antibiotic isoniazid. Discovering genetic mechanisms that reduce drug susceptibility and support the evolution of high-level drug resistance will guide development of biomarkers capable of prospectively identifying patients at risk of treatment failure in the clinic.
细菌病原体的抗生素耐药性的基因组剖析主要集中在赋予生长超过单一临界药物浓度的遗传变化上。然而,即使低于这个临界点,对抗生素的敏感性降低也与临床治疗结果不佳相关,包括结核病。结核分枝杆菌的临床菌株表现出抗生素敏感性的广泛定量变化,但这种药物敏感性谱的遗传基础仍未明确。通过全基因组关联研究,我们表明编码 DNA 复制必需且高度保守的调节剂的 dnaA 中的非同义突变与临床结核分枝杆菌菌株的耐药性相关。我们证明这些 dnaA 突变通过降低异烟肼激活剂 katG 的表达,特异性增强了结核分枝杆菌在异烟肼治疗期间的存活。为了鉴定与该表型相关的 DnaA 相互作用物,我们首次在分枝杆菌中进行了全基因组生化 DnaA 结合位点作图,揭示了一个 DnaA 相互作用位点,该位点是临床菌株中反复突变的靶标。在这个 DnaA 相互作用位点中重建临床上常见的突变重现了 dnaA 突变体的表型,表明结核分枝杆菌的临床菌株已经进化出了一种以前未被表征的 DnaA 途径的突变,这种突变可定量增加对关键一线抗生素异烟肼的耐药性。发现降低药物敏感性并支持高水平耐药性进化的遗传机制将指导开发能够前瞻性识别临床治疗失败风险患者的生物标志物。