Suppr超能文献

[3D U-net在颞骨CT中耳手术结构自动分割中的应用]

[Application of 3D U-net in automatic segmentation of middle ear surgery structures in temporal bone CT].

作者信息

Ke Jia, Lv Yi, DU Yali, Wang Junchen, Wang Jiang, Sun Shilong, Ma Furong

机构信息

Department of Otorhinolaryngology Head and Neck Surgery,Third Hospital,Peking University,Beijing,100191,China.

School of Mechanical Engineering and Automation,Beihang University.

出版信息

Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020 Oct;34(10):870-873. doi: 10.13201/j.issn.2096-7993.2020.10.002.

Abstract

To study the feasibility of fully automatic segmentation of labyrinth, facial nerve and ossicles in clinical routine temporal bone CT images based on 3D U-net neural network. Clinical data were divided into two groups: ①Normal group: data were randomly assigned from 30 patients for routine temporal bone CT examination; ②Abnormal group: cochlear, ossicles and facial nerve morphology variation of 1 case each. The structures of facial nerve, labyrinth and ossicles were manually initial segmented and fine segmented by 2 clinicians with Mimics 20.0. Three-dimensional convolutional neural network(3D U-Net) was selected to conduct deep learning on the same data. The dice similarity coefficient(DSC) was used as the evaluation index. The 3D U-net neural network was used to automatically segment the labyrinth, ossicles and facial nerve in the routine temporal bone CT. In the normal group, the DSC of labyrinth, ossicles and facial nerve were 0.79±0.03, 0.64±0.05 and 0.49±0.09, respectively. In the abnormal group, the DSC of these structures were 0.71, 0.54 and 0.40. According to the anatomical characteristics of the temporal bone, the labyrinth, ossicles and the facial nerve can be totally automatic segmented by 3D U-net neural network, and the accuracy was closed to that of manual segmentation. This method is feasible, fast and accurate.

摘要

基于3D U-net神经网络研究在临床常规颞骨CT图像中全自动分割内耳、面神经和听小骨的可行性。临床资料分为两组:①正常组:从30例行常规颞骨CT检查的患者中随机选取数据;②异常组:各1例耳蜗、听小骨及面神经形态变异患者。由2名临床医生使用Mimics 20.0对内耳、面神经和听小骨结构进行手动初始分割和精细分割。选择三维卷积神经网络(3D U-Net)对相同数据进行深度学习。采用骰子相似系数(DSC)作为评价指标。使用3D U-net神经网络在常规颞骨CT中自动分割内耳、听小骨及面神经。正常组中,内耳、听小骨及面神经的DSC分别为0.79±0.03、0.64±0.05和0.49±0.09。异常组中,这些结构的DSC分别为0.71、0.54和0.40。根据颞骨的解剖特征,3D U-net神经网络可对内耳、听小骨及面神经进行全自动分割,且准确性接近手动分割。该方法可行、快速且准确。

相似文献

1
[Application of 3D U-net in automatic segmentation of middle ear surgery structures in temporal bone CT].[3D U-net在颞骨CT中耳手术结构自动分割中的应用]
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020 Oct;34(10):870-873. doi: 10.13201/j.issn.2096-7993.2020.10.002.
8

引用本文的文献

1
Research and application progress in deep learning in otology.深度学习在耳科学中的研究与应用进展。
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2023 Mar 28;48(3):463-471. doi: 10.11817/j.issn.1672-7347.2023.210588.
2
[Application of deep learning assisted electronic laryngoscope in diagnosis of laryngeal leukoplakia].深度学习辅助电子喉镜在喉白斑病诊断中的应用
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2021 May;35(5):464-467. doi: 10.13201/j.issn.2096-7993.2021.05.019.

本文引用的文献

1
Toward an automatic preoperative pipeline for image-guided temporal bone surgery.面向图像引导颞骨手术的自动术前流水线。
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):967-976. doi: 10.1007/s11548-019-01937-x. Epub 2019 Mar 19.
2
Atlas-Based Segmentation of Temporal Bone Anatomy.基于图谱的颞骨解剖分割。
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944. doi: 10.1007/s11548-017-1658-6. Epub 2017 Aug 29.
5
Automatic segmentation of intracochlear anatomy in conventional CT.常规 CT 中耳蜗内解剖结构的自动分割。
IEEE Trans Biomed Eng. 2011 Sep;58(9):2625-32. doi: 10.1109/TBME.2011.2160262. Epub 2011 Jun 23.
6
Theory and practice of tympanoplasty.鼓室成形术的理论与实践
Laryngoscope. 1956 Aug;66(8):1076-93. doi: 10.1288/00005537-195608000-00008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验