University of Mississippi Medical Center, Jackson, Mississippi, USA.
Universidad Internacional de La Rioja, Logroño, Spain.
J Interpers Violence. 2022 Jul;37(13-14):NP11460-NP11489. doi: 10.1177/0886260520978195. Epub 2020 Nov 30.
A substantial minority of women who experience interpersonal violence will develop posttraumatic stress disorder (PTSD). One critical challenge for preventing PTSD is predicting whose acute posttraumatic stress symptoms will worsen to a clinically significant degree. This 6-month longitudinal study adopted multilevel modeling and exploratory machine learning (ML) methods to predict PTSD onset in 58 young women, ages 18 to 30, who experienced an incident of physical and/or sexual assault in the three months prior to baseline assessment. Women completed baseline assessments of theory-driven cognitive and neurobiological predictors and interview-based measures of PTSD diagnostic status and symptom severity at 1-, 3-, and 6-month follow-ups. Higher levels of self-blame, generalized anxiety disorder severity, childhood trauma exposure, and impairment across multiple domains were associated with a pattern of high and stable posttraumatic stress symptom severity over time. Predictive performance for PTSD onset was similarly strong for a gradient boosting machine learning model including all predictors and a logistic regression model including only baseline posttraumatic stress symptom severity. The present findings provide directions for future work on PTSD prediction among interpersonal violence survivors that could enhance early risk detection and potentially inform targeted prevention programs.
相当一部分经历人际暴力的女性会患上创伤后应激障碍(PTSD)。预防 PTSD 的一个关键挑战是预测哪些急性创伤后应激症状会恶化到临床显著程度。这项为期 6 个月的纵向研究采用多层次建模和探索性机器学习(ML)方法,对 58 名年龄在 18 至 30 岁之间的年轻女性进行预测,这些女性在基线评估前的三个月内经历了身体和/或性侵犯事件。女性在基线评估时完成了基于理论的认知和神经生物学预测因子以及基于访谈的 PTSD 诊断状况和症状严重程度的测量,在 1、3 和 6 个月的随访中进行了测量。自我责备、广泛性焦虑症严重程度、儿童期创伤暴露和多个领域的功能障碍程度较高与创伤后应激症状严重程度随时间呈高度稳定模式相关。包括所有预测因子的梯度提升机学习模型和仅包括基线创伤后应激症状严重程度的逻辑回归模型对 PTSD 发病的预测性能同样强大。这些发现为人际暴力幸存者 PTSD 预测的未来工作提供了方向,这可能有助于早期风险检测,并可能为有针对性的预防计划提供信息。