Suppr超能文献

应用深度学习对画钟测验进行自动痴呆筛查和评分。

Automatic dementia screening and scoring by applying deep learning on clock-drawing tests.

机构信息

Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.

Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.

出版信息

Sci Rep. 2020 Nov 30;10(1):20854. doi: 10.1038/s41598-020-74710-9.

Abstract

Dementia is one of the most common neurological syndromes in the world. Usually, diagnoses are made based on paper-and-pencil tests and scored depending on personal judgments of experts. This technique can introduce errors and has high inter-rater variability. To overcome these issues, we present an automatic assessment of the widely used paper-based clock-drawing test by means of deep neural networks. Our study includes a comparison of three modern architectures: VGG16, ResNet-152, and DenseNet-121. The dataset consisted of 1315 individuals. To deal with the limited amount of data, which also included several dementia types, we used optimization strategies for training the neural network. The outcome of our work is a standardized and digital estimation of the dementia screening result and severity level for an individual. We achieved accuracies of 96.65% for screening and up to 98.54% for scoring, overcoming the reported state-of-the-art as well as human accuracies. Due to the digital format, the paper-based test can be simply scanned by using a mobile device and then be evaluated also in areas where there is a staff shortage or where no clinical experts are available.

摘要

痴呆症是世界上最常见的神经综合征之一。通常,诊断是基于纸笔测试,并根据专家的个人判断进行评分。这种技术可能会引入误差,并且评分者之间的差异很大。为了克服这些问题,我们提出了一种通过深度神经网络对广泛使用的基于纸笔的时钟绘制测试进行自动评估的方法。我们的研究比较了三种现代架构:VGG16、ResNet-152 和 DenseNet-121。该数据集包括 1315 个人。为了处理有限的数据量,其中还包括几种痴呆类型,我们使用了优化策略来训练神经网络。我们的工作的结果是对个体的痴呆症筛查结果和严重程度进行标准化和数字化评估。我们在筛查方面的准确率达到了 96.65%,在评分方面的准确率高达 98.54%,超过了报告的最新技术水平和人类的准确率。由于采用了数字化格式,基于纸张的测试可以简单地通过移动设备进行扫描,然后在人员短缺或没有临床专家的地区进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca27/7704614/37701cbdd22b/41598_2020_74710_Fig1_HTML.jpg

相似文献

1
Automatic dementia screening and scoring by applying deep learning on clock-drawing tests.
Sci Rep. 2020 Nov 30;10(1):20854. doi: 10.1038/s41598-020-74710-9.
2
Clock completion: an objective screening test for dementia.
J Am Geriatr Soc. 1993 Nov;41(11):1235-40. doi: 10.1111/j.1532-5415.1993.tb07308.x.
9
Time that tells: critical clock-drawing errors for dementia screening.
Int Psychogeriatr. 2008 Jun;20(3):459-70. doi: 10.1017/S1041610207006035. Epub 2007 Oct 1.
10
Clock drawing in the Montreal Cognitive Assessment: recommendations for dementia assessment.
Dement Geriatr Cogn Disord. 2011;31(3):179-87. doi: 10.1159/000324639. Epub 2011 Mar 10.

引用本文的文献

2
Has the Clock Drawing Test been left aside with the replacement of analog clocks by smartphones?
Dement Neuropsychol. 2025 Mar 21;19:e20240178. doi: 10.1590/1980-5764-DN-2024-0178. eCollection 2025.
7
A Telemedicine Analytic Framework for Fully and Semi-Automatic Alzheimer's Disease Screening Using Clock Drawing Test.
IEEE J Biomed Health Inform. 2024 Dec;28(12):7503-7516. doi: 10.1109/JBHI.2024.3419059. Epub 2024 Dec 5.

本文引用的文献

1
Stepwise PathNet: a layer-by-layer knowledge-selection-based transfer learning algorithm.
Sci Rep. 2020 May 18;10(1):8132. doi: 10.1038/s41598-020-64165-3.
3
Learning with Known Operators reduces Maximum Training Error Bounds.
Nat Mach Intell. 2019 Aug;1(8):373-380. doi: 10.1038/s42256-019-0077-5. Epub 2019 Aug 9.
4
A gentle introduction to deep learning in medical image processing.
Z Med Phys. 2019 May;29(2):86-101. doi: 10.1016/j.zemedi.2018.12.003. Epub 2019 Jan 25.
5
Deep Learning-A Technology With the Potential to Transform Health Care.
JAMA. 2018 Sep 18;320(11):1101-1102. doi: 10.1001/jama.2018.11100.
7
THink: Inferring Cognitive Status from Subtle Behaviors.
Proc AAAI Conf Artif Intell. 2014 Jul;2014:2898-2905.
8
Learning Classification Models of Cognitive Conditions from Subtle Behaviors in the Digital Clock Drawing Test.
Mach Learn. 2016 Mar;102(3):393-441. doi: 10.1007/s10994-015-5529-5. Epub 2015 Oct 20.
9
Alzheimer disease in the United States (2010-2050) estimated using the 2010 census.
Neurology. 2013 May 7;80(19):1778-83. doi: 10.1212/WNL.0b013e31828726f5. Epub 2013 Feb 6.
10
The clock-drawing test. 1998.
Age Ageing. 2012 Nov;41 Suppl 3:iii41-5. doi: 10.1093/ageing/afs149.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验