文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用全卷积神经网络实时预测 2D 高斯形状进行息肉检测。

Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction.

机构信息

Intervention Centre, Oslo University Hospital, Oslo, Norway; Department of Informatics, University of Oslo, Oslo, Norway; OmniVision Technologies Norway AS, Oslo, Norway.

Department of Computer Engineering, Mokpo National University, Mokpo, Korea.

出版信息

Med Image Anal. 2021 Feb;68:101897. doi: 10.1016/j.media.2020.101897. Epub 2020 Nov 12.


DOI:10.1016/j.media.2020.101897
PMID:33260111
Abstract

To decrease colon polyp miss-rate during colonoscopy, a real-time detection system with high accuracy is needed. Recently, there have been many efforts to develop models for real-time polyp detection, but work is still required to develop real-time detection algorithms with reliable results. We use single-shot feed-forward fully convolutional neural networks (F-CNN) to develop an accurate real-time polyp detection system. F-CNNs are usually trained on binary masks for object segmentation. We propose the use of 2D Gaussian masks instead of binary masks to enable these models to detect different types of polyps more effectively and efficiently and reduce the number of false positives. The experimental results showed that the proposed 2D Gaussian masks are efficient for detection of flat and small polyps with unclear boundaries between background and polyp parts. The masks make a better training effect to discriminate polyps from the polyp-like false positives. The proposed method achieved state-of-the-art results on two polyp datasets. On the ETIS-LARIB dataset we achieved 86.54% recall, 86.12% precision, and 86.33% F1-score, and on the CVC-ColonDB we achieved 91% recall, 88.35% precision, and F1-score 89.65%.

摘要

为了降低结肠镜检查中结肠息肉的漏诊率,需要一种高精度的实时检测系统。最近,已经有很多人致力于开发实时息肉检测模型,但仍需要开发具有可靠结果的实时检测算法。我们使用单镜头前馈全卷积神经网络(F-CNN)来开发一个准确的实时息肉检测系统。F-CNN 通常在二值掩模上进行对象分割的训练。我们建议使用二维高斯掩模代替二值掩模,以使这些模型能够更有效地检测不同类型的息肉,并减少假阳性。实验结果表明,所提出的二维高斯掩模对于检测具有不清晰边界的扁平小息肉非常有效。掩模可以更好地训练效果,从息肉状的假阳性中区分出息肉。该方法在两个息肉数据集上取得了最先进的结果。在 ETIS-LARIB 数据集上,我们达到了 86.54%的召回率、86.12%的精度和 86.33%的 F1 分数,在 CVC-ColonDB 上,我们达到了 91%的召回率、88.35%的精度和 89.65%的 F1 分数。

相似文献

[1]
Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction.

Med Image Anal. 2021-2

[2]
A robust real-time deep learning based automatic polyp detection system.

Comput Biol Med. 2021-7

[3]
A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation.

IEEE J Biomed Health Inform. 2021-6

[4]
An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets.

Comput Biol Med. 2022-2

[5]
Improving Automatic Polyp Detection Using CNN by Exploiting Temporal Dependency in Colonoscopy Video.

IEEE J Biomed Health Inform. 2019-4-1

[6]
Training data enhancements for improving colonic polyp detection using deep convolutional neural networks.

Artif Intell Med. 2021-1

[7]
ColonGen: an efficient polyp segmentation system for generalization improvement using a new comprehensive dataset.

Phys Eng Sci Med. 2024-3

[8]
Positive-gradient-weighted object activation mapping: visual explanation of object detector towards precise colorectal-polyp localisation.

Int J Comput Assist Radiol Surg. 2022-11

[9]
SR-AttNet: An Interpretable Stretch-Relax Attention based Deep Neural Network for Polyp Segmentation in Colonoscopy Images.

Comput Biol Med. 2023-6

[10]
Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning.

Med Phys. 2019-10-31

引用本文的文献

[1]
Deep learning model applied to real-time delineation of colorectal polyps.

BMC Med Inform Decis Mak. 2025-6-4

[2]
CRH-YOLO for precise and efficient detection of gastrointestinal polyps.

Sci Rep. 2024-12-3

[3]
[Research progress on colorectal cancer identification based on convolutional neural network].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-8-25

[4]
A semantic feature enhanced YOLOv5-based network for polyp detection from colonoscopy images.

Sci Rep. 2024-7-5

[5]
Polyp segmentation based on implicit edge-guided cross-layer fusion networks.

Sci Rep. 2024-5-22

[6]
A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

BMC Gastroenterol. 2024-1-2

[7]
A Multiscale Polyp Detection Approach for GI Tract Images Based on Improved DenseNet and Single-Shot Multibox Detector.

Diagnostics (Basel). 2023-2-15

[8]
A stacking-based artificial intelligence framework for an effective detection and localization of colon polyps.

Sci Rep. 2022-10-21

[9]
Multi-Scale Hybrid Network for Polyp Detection in Wireless Capsule Endoscopy and Colonoscopy Images.

Diagnostics (Basel). 2022-8-22

[10]
Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets.

Diagnostics (Basel). 2022-4-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索