NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal.
Sci Rep. 2022 Oct 21;12(1):17678. doi: 10.1038/s41598-022-21574-w.
Polyp detection through colonoscopy is a widely used method to prevent colorectal cancer. The automation of this process aided by artificial intelligence allows faster and improved detection of polyps that can be missed during a standard colonoscopy. In this work, we propose to implement various object detection algorithms for polyp detection. To improve the mean average precision (mAP) of the detection, we combine the baseline models through a stacking approach. The experiments demonstrate the potential of this new methodology, which can reduce the workload for oncologists and increase the precision of the localization of polyps. Our proposal achieves a mAP of 0.86, translated into an improvement of 34.9% compared to the best baseline model and 28.8% with respect to the weighted boxes fusion ensemble technique.
结肠镜检查中的息肉检测是预防结直肠癌的一种广泛应用的方法。人工智能辅助的该过程自动化可以更快、更好地检测到在标准结肠镜检查中可能错过的息肉。在这项工作中,我们提出了用于息肉检测的各种目标检测算法。为了提高检测的平均精度 (mAP),我们通过堆叠方法将基线模型结合起来。实验证明了这种新方法的潜力,它可以减少肿瘤学家的工作量并提高息肉定位的精度。我们的提案实现了 0.86 的 mAP,与最佳基线模型相比提高了 34.9%,与加权框融合集成技术相比提高了 28.8%。