Suppr超能文献

一种新开发的基于深度学习的系统,用于在双气囊小肠镜检查期间自动检测和分类小肠病变。

A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

机构信息

Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.

Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

BMC Gastroenterol. 2024 Jan 2;24(1):10. doi: 10.1186/s12876-023-03067-w.

Abstract

BACKGROUND

Double-balloon enteroscopy (DBE) is a standard method for diagnosing and treating small bowel disease. However, DBE may yield false-negative results due to oversight or inexperience. We aim to develop a computer-aided diagnostic (CAD) system for the automatic detection and classification of small bowel abnormalities in DBE.

DESIGN AND METHODS

A total of 5201 images were collected from Renmin Hospital of Wuhan University to construct a detection model for localizing lesions during DBE, and 3021 images were collected to construct a classification model for classifying lesions into four classes, protruding lesion, diverticulum, erosion & ulcer and angioectasia. The performance of the two models was evaluated using 1318 normal images and 915 abnormal images and 65 videos from independent patients and then compared with that of 8 endoscopists. The standard answer was the expert consensus.

RESULTS

For the image test set, the detection model achieved a sensitivity of 92% (843/915) and an area under the curve (AUC) of 0.947, and the classification model achieved an accuracy of 86%. For the video test set, the accuracy of the system was significantly better than that of the endoscopists (85% vs. 77 ± 6%, p < 0.01). For the video test set, the proposed system was superior to novices and comparable to experts.

CONCLUSIONS

We established a real-time CAD system for detecting and classifying small bowel lesions in DBE with favourable performance. ENDOANGEL-DBE has the potential to help endoscopists, especially novices, in clinical practice and may reduce the miss rate of small bowel lesions.

摘要

背景

双气囊小肠镜(DBE)是诊断和治疗小肠疾病的标准方法。然而,由于疏忽或经验不足,DBE 可能会产生假阴性结果。我们旨在开发一种用于自动检测和分类 DBE 中小肠异常的计算机辅助诊断(CAD)系统。

设计和方法

共从武汉大学人民医院采集了 5201 张图像来构建用于在 DBE 期间定位病变的检测模型,并且采集了 3021 张图像来构建用于将病变分类为四类(突出病变、憩室、侵蚀和溃疡以及血管扩张)的分类模型。使用 1318 张正常图像和 915 张异常图像以及来自 65 名独立患者的 65 个视频评估两个模型的性能,然后与 8 名内镜医生的性能进行比较。标准答案是专家共识。

结果

对于图像测试集,检测模型的灵敏度为 92%(843/915),曲线下面积(AUC)为 0.947,分类模型的准确性为 86%。对于视频测试集,系统的准确性明显优于内镜医生(85%比 77±6%,p<0.01)。对于视频测试集,该系统优于新手,与专家相当。

结论

我们建立了一种用于实时检测和分类 DBE 中小肠病变的 CAD 系统,性能良好。ENDOANGEL-DBE 有可能帮助内镜医生,特别是新手,在临床实践中,并可能降低小肠病变的漏诊率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/881e7b3d9d61/12876_2023_3067_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验