文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种新开发的基于深度学习的系统,用于在双气囊小肠镜检查期间自动检测和分类小肠病变。

A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

机构信息

Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.

Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.

出版信息

BMC Gastroenterol. 2024 Jan 2;24(1):10. doi: 10.1186/s12876-023-03067-w.


DOI:10.1186/s12876-023-03067-w
PMID:38166722
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10759410/
Abstract

BACKGROUND: Double-balloon enteroscopy (DBE) is a standard method for diagnosing and treating small bowel disease. However, DBE may yield false-negative results due to oversight or inexperience. We aim to develop a computer-aided diagnostic (CAD) system for the automatic detection and classification of small bowel abnormalities in DBE. DESIGN AND METHODS: A total of 5201 images were collected from Renmin Hospital of Wuhan University to construct a detection model for localizing lesions during DBE, and 3021 images were collected to construct a classification model for classifying lesions into four classes, protruding lesion, diverticulum, erosion & ulcer and angioectasia. The performance of the two models was evaluated using 1318 normal images and 915 abnormal images and 65 videos from independent patients and then compared with that of 8 endoscopists. The standard answer was the expert consensus. RESULTS: For the image test set, the detection model achieved a sensitivity of 92% (843/915) and an area under the curve (AUC) of 0.947, and the classification model achieved an accuracy of 86%. For the video test set, the accuracy of the system was significantly better than that of the endoscopists (85% vs. 77 ± 6%, p < 0.01). For the video test set, the proposed system was superior to novices and comparable to experts. CONCLUSIONS: We established a real-time CAD system for detecting and classifying small bowel lesions in DBE with favourable performance. ENDOANGEL-DBE has the potential to help endoscopists, especially novices, in clinical practice and may reduce the miss rate of small bowel lesions.

摘要

背景:双气囊小肠镜(DBE)是诊断和治疗小肠疾病的标准方法。然而,由于疏忽或经验不足,DBE 可能会产生假阴性结果。我们旨在开发一种用于自动检测和分类 DBE 中小肠异常的计算机辅助诊断(CAD)系统。

设计和方法:共从武汉大学人民医院采集了 5201 张图像来构建用于在 DBE 期间定位病变的检测模型,并且采集了 3021 张图像来构建用于将病变分类为四类(突出病变、憩室、侵蚀和溃疡以及血管扩张)的分类模型。使用 1318 张正常图像和 915 张异常图像以及来自 65 名独立患者的 65 个视频评估两个模型的性能,然后与 8 名内镜医生的性能进行比较。标准答案是专家共识。

结果:对于图像测试集,检测模型的灵敏度为 92%(843/915),曲线下面积(AUC)为 0.947,分类模型的准确性为 86%。对于视频测试集,系统的准确性明显优于内镜医生(85%比 77±6%,p<0.01)。对于视频测试集,该系统优于新手,与专家相当。

结论:我们建立了一种用于实时检测和分类 DBE 中小肠病变的 CAD 系统,性能良好。ENDOANGEL-DBE 有可能帮助内镜医生,特别是新手,在临床实践中,并可能降低小肠病变的漏诊率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/67d4785c8c7e/12876_2023_3067_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/881e7b3d9d61/12876_2023_3067_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/812394ae1577/12876_2023_3067_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/67d4785c8c7e/12876_2023_3067_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/881e7b3d9d61/12876_2023_3067_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/812394ae1577/12876_2023_3067_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bed5/10759410/67d4785c8c7e/12876_2023_3067_Fig3_HTML.jpg

相似文献

[1]
A newly developed deep learning-based system for automatic detection and classification of small bowel lesions during double-balloon enteroscopy examination.

BMC Gastroenterol. 2024-1-2

[2]
Comparison of the Positive Rate and Diagnostic Value of Capsule Endoscopy and Double-Balloon Enteroscopy in Small Bowel Disease: A Retrospective Cohort Analysis.

Arch Iran Med. 2021-3-1

[3]
Double-balloon endoscopy is safe and effective for the diagnosis and treatment of small-bowel disorders: prospective multicenter study carried out by expert and non-expert endoscopists in Japan.

Dig Endosc. 2015-3

[4]
The role of capsule endoscopy combined with double-balloon enteroscopy in diagnosis of small bowel diseases.

Chin Med J (Engl). 2007-1-5

[5]
Single-balloon versus double-balloon endoscopy for achieving total enteroscopy: a randomized, controlled trial.

Gastrointest Endosc. 2011-1-26

[6]
Single incision laparoscopic assisted double balloon enteroscopy: a novel technique to manage small bowel pathology.

Surg Endosc. 2020-6

[7]
Single- vs. double-balloon enteroscopy in small-bowel diagnostics: a randomized multicenter trial.

Endoscopy. 2011-3-7

[8]
How to approach the small bowel with flexible enteroscopy.

Gastroenterol Clin North Am. 2010-10-8

[9]
Double-Balloon Enteroscopy.

Gastrointest Endosc Clin N Am. 2017-1

[10]
Usefulness of EUS with double-balloon enteroscopy for diagnosis of small-bowel diseases.

Gastrointest Endosc. 2007-3

本文引用的文献

[1]
Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions.

Medicina (Kaunas). 2023-1-15

[2]
Artificial Intelligence and Device-Assisted Enteroscopy: Automatic Detection of Enteric Protruding Lesions Using a Convolutional Neural Network.

Clin Transl Gastroenterol. 2022-8-1

[3]
Development and validation of a feature extraction-based logical anthropomorphic diagnostic system for early gastric cancer: A case-control study.

EClinicalMedicine. 2022-3-30

[4]
Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia.

Medicina (Kaunas). 2021-12-18

[5]
A robust real-time deep learning based automatic polyp detection system.

Comput Biol Med. 2021-7

[6]
Deep Neural Network Accurately Predicts Prognosis of Ulcerative Colitis Using Endoscopic Images.

Gastroenterology. 2021-5

[7]
Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction.

Med Image Anal. 2021-2

[8]
Artificial intelligence for cancer detection of the upper gastrointestinal tract.

Dig Endosc. 2021-1

[9]
Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal endoscopy.

Dig Endosc. 2021-1

[10]
Automatic evaluation of degree of cleanliness in capsule endoscopy based on a novel CNN architecture.

Sci Rep. 2020-10-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索