Suppr超能文献

生成式神经网络的微调用于设计多靶化合物。

Fine-tuning of a generative neural network for designing multi-target compounds.

机构信息

Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, 53115, Bonn, Germany.

出版信息

J Comput Aided Mol Des. 2022 May;36(5):363-371. doi: 10.1007/s10822-021-00392-8. Epub 2021 May 28.

Abstract

Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topical issues in pharmaceutical research. We have investigated the ability of a generative neural network to create multi-target compounds. Data sets of experimentally confirmed multi-target, single-target, and consistently inactive compounds were extracted from public screening data considering positive and negative assay results. These data sets were used to fine-tune the REINVENT generative model via transfer learning to systematically recognize multi-target compounds, distinguish them from single-target or inactive compounds, and construct new multi-target compounds. During fine-tuning, the model showed a clear tendency to increasingly generate multi-target compounds and structural analogs. Our findings indicate that generative models can be adopted for de novo multi-target compound design.

摘要

探索小分子多靶点活性的起源并设计新的多靶点化合物是药物研究中的热点问题。我们研究了生成式神经网络创建多靶点化合物的能力。从考虑阳性和阴性测定结果的公共筛选数据中提取了经过实验证实的多靶点、单靶点和始终无活性化合物的数据集。通过迁移学习对这些数据集进行微调,以通过系统地识别多靶点化合物、将其与单靶点或无活性化合物区分开来并构建新的多靶点化合物来对 REINVENT 生成模型进行微调。在微调过程中,该模型显示出越来越多地生成多靶点化合物和结构类似物的明显趋势。我们的研究结果表明,生成模型可用于从头设计新的多靶点化合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d19b/9325839/1f128ccf8cc3/10822_2021_392_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验