Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 6, 53115, Bonn, Germany.
J Comput Aided Mol Des. 2022 May;36(5):363-371. doi: 10.1007/s10822-021-00392-8. Epub 2021 May 28.
Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topical issues in pharmaceutical research. We have investigated the ability of a generative neural network to create multi-target compounds. Data sets of experimentally confirmed multi-target, single-target, and consistently inactive compounds were extracted from public screening data considering positive and negative assay results. These data sets were used to fine-tune the REINVENT generative model via transfer learning to systematically recognize multi-target compounds, distinguish them from single-target or inactive compounds, and construct new multi-target compounds. During fine-tuning, the model showed a clear tendency to increasingly generate multi-target compounds and structural analogs. Our findings indicate that generative models can be adopted for de novo multi-target compound design.
探索小分子多靶点活性的起源并设计新的多靶点化合物是药物研究中的热点问题。我们研究了生成式神经网络创建多靶点化合物的能力。从考虑阳性和阴性测定结果的公共筛选数据中提取了经过实验证实的多靶点、单靶点和始终无活性化合物的数据集。通过迁移学习对这些数据集进行微调,以通过系统地识别多靶点化合物、将其与单靶点或无活性化合物区分开来并构建新的多靶点化合物来对 REINVENT 生成模型进行微调。在微调过程中,该模型显示出越来越多地生成多靶点化合物和结构类似物的明显趋势。我们的研究结果表明,生成模型可用于从头设计新的多靶点化合物。