文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人脐带间充质基质细胞作为一种辅助治疗方法与治疗性低体温联合应用于围产期窒息的仔猪模型。

Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia.

机构信息

Institute for Women's Health, University College London, London, UK.

Institute for Women's Health, University College London, London, UK.

出版信息

Cytotherapy. 2021 Jun;23(6):521-535. doi: 10.1016/j.jcyt.2020.10.005. Epub 2020 Nov 28.


DOI:10.1016/j.jcyt.2020.10.005
PMID:33262073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8139415/
Abstract

BACKGROUND: With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS: The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS: A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 10 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 10 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 10 IN PKH-labeled huMSCs were administered. RESULTS: HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS: After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 10 cells/kg total dose) based on more rapid aEEG recovery, improved P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.

摘要

背景:在治疗新生儿脑病的治疗性低温(HT)中,残疾率降低,但并非所有婴儿都受益。临床前啮齿动物研究表明间充质基质细胞(MSCs)增强 HT 保护作用。

目的:作者研究了静脉(IV)或鼻内(IN)人脐带衍生 MSC(huMSC)作为 HT 在猪模型中辅助治疗的疗效。

方法:共有 17 只新生仔猪经历短暂的脑缺氧缺血(HI),然后随机分为(i)HI 后 1-13 小时 HT(n=7),(ii)HI 后 24 小时和 48 小时 IV huMSC(30×10 细胞)(n=5)或(iii)HI 后 24 小时和 48 小时 IN huMSC(30×10 细胞)(n=5)。在 30 小时和 72 小时进行磷-31 和氢-1 磁共振光谱(MRS),并定量末端脱氧核苷酸转移酶 dUTP 缺口末端标记(TUNEL)阳性细胞和少突胶质细胞。在另外两只小猪中,给予 30×10 IN PKH 标记的 huMSC。

结果:各组 HI 严重程度相似。与 HT 相比,HT+IN huMSC 的振幅整合脑电图(aEEG)恢复更快,从 25 小时到 42 小时和 49 小时到 54 小时(P≤0.05)。HT+IN huMSC 组第 2 天 MRS 磷酸肌酸/无机磷高于 HT(P=0.035)。与 HT、HT+IV huMSC 相比,HT+IN huMSC 组海马(P=0.011 和 0.018)、内囊(P=0.013 和 0.037)和脑室周围白质(P=0.15 用于 IN 与 IV huMSC)的 OLIG2 计数增加。与 HT 相比,HT+IN huMSC 组内囊中的 TUNEL 阳性细胞减少(P=0.05)。IN 给药后 12 小时可在脑内检测到 PKH 标记的 huMSC。

结论:与单独 HT 相比,在全脑 HI 后,作者发现 HT+IN huMSC(30×10 细胞/kg 总剂量)在 24 小时和 48 小时给药具有有益作用,基于更快的 aEEG 恢复、改善 P MRS 脑能量代谢和增加 72 小时少突胶质细胞存活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/7a3071816167/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/689561cf1f9e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/5120bcd2238a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/233acc9d0cdb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/62c1e1484eaf/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/145625d936d8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/7a3071816167/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/689561cf1f9e/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/5120bcd2238a/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/233acc9d0cdb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/62c1e1484eaf/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/145625d936d8/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f79/8139415/7a3071816167/gr6.jpg

相似文献

[1]
Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia.

Cytotherapy. 2021-6

[2]
Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia-ischemia.

Pediatr Res. 2022-5

[3]
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model.

Sci Rep. 2020-3-3

[4]
Systemic pro-inflammatory cytokine status following therapeutic hypothermia in a piglet hypoxia-ischemia model.

J Neuroinflammation. 2017-3-3

[5]
White matter apoptosis is increased by delayed hypothermia and rewarming in a neonatal piglet model of hypoxic ischemic encephalopathy.

Neuroscience. 2016-3-1

[6]
Melatonin reduces brain injury following inflammation-amplified hypoxia-ischemia in a translational newborn piglet study of neonatal encephalopathy.

J Pineal Res. 2024-5

[7]
Dexmedetomidine Combined with Therapeutic Hypothermia Is Associated with Cardiovascular Instability and Neurotoxicity in a Piglet Model of Perinatal Asphyxia.

Dev Neurosci. 2017

[8]
Relationship between prolonged neural suppression and cerebral hemodynamic dysfunction during hypothermia in asphyxiated piglets.

Brain Dev. 2018-9

[9]
Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia.

Brain Commun. 2020-12-1

[10]
Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model.

Brain. 2012-11-26

引用本文的文献

[1]
Biomarkers for early detection and monitoring of abnormal brain development in mild fetal growth restriction.

iScience. 2025-7-30

[2]
Hypoxic Preconditioning Enhances the Potential of Mesenchymal Stem Cells to Treat Neonatal Hypoxic-Ischemic Brain Injury.

Stroke. 2025-4-18

[3]
Sex dimorphism in brain cell death after hypoxia-ischemia in newborn piglets.

Pediatr Res. 2025-4-16

[4]
[Role of the nuclear factor-kappa B signaling pathway in the repair of white matter injury in neonatal rats through human umbilical cord mesenchymal stem cell transplantation].

Zhongguo Dang Dai Er Ke Za Zhi. 2024-12-15

[5]
Conflicting findings on the effectiveness of hydrogen therapy for ameliorating vascular leakage in a 5-day post hypoxic-ischemic survival piglet model.

Sci Rep. 2023-6-28

[6]
A Pilot Phase I Trial of Allogeneic Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells in Neonates With Hypoxic-Ischemic Encephalopathy.

Stem Cells Transl Med. 2023-6-15

[7]
Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury.

Inflamm Regen. 2023-4-17

[8]
Stem Cell Therapy for Ischemic Brain Injury: Early Intranasal Delivery after Cardiac Arrest.

Transl Stroke Res. 2024-6

[9]
Umbilical cord-derived mesenchymal stromal cell therapy to prevent the development of neurodevelopmental disorders related to low birth weight.

Sci Rep. 2023-3-7

[10]
Neuroprotective therapies in the NICU in term infants: present and future.

Pediatr Res. 2023-6

本文引用的文献

[1]
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model.

Sci Rep. 2020-3-3

[2]
Phase I/II Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke.

Stroke. 2019-9-9

[3]
Acute LPS sensitization and continuous infusion exacerbates hypoxic brain injury in a piglet model of neonatal encephalopathy.

Sci Rep. 2019-7-15

[4]
Repurposing azithromycin for neonatal neuroprotection.

Pediatr Res. 2019-5-17

[5]
Stem cell therapy for preventing neonatal diseases in the 21st century: Current understanding and challenges.

Pediatr Res. 2020-1

[6]
School-age outcomes of children without cerebral palsy cooled for neonatal hypoxic-ischaemic encephalopathy in 2008-2010.

Arch Dis Child Fetal Neonatal Ed. 2019-4-29

[7]
Motor performance and cognitive correlates in children cooled for neonatal encephalopathy without cerebral palsy at school age.

Acta Paediatr. 2019-4-9

[8]
Large-scale secretome analyses unveil the superior immunosuppressive phenotype of umbilical cord stromal cells as compared to other adult mesenchymal stromal cells.

Eur Cell Mater. 2019-2-20

[9]
Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition.

Cochrane Database Syst Rev. 2019-1-30

[10]
Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study.

Lancet Neurol. 2018-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索