文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于16S rRNA的物种水平分类分配的数据驱动建模:在人类微生物组中的应用

Data-Driven Modeling for Species-Level Taxonomic Assignment From 16S rRNA: Application to Human Microbiomes.

作者信息

Gwak Ho-Jin, Rho Mina

机构信息

Department of Computer Science and Engineering, Hanyang University, Seoul, South Korea.

Department of Biomedical Informatics, Hanyang University, Seoul, South Korea.

出版信息

Front Microbiol. 2020 Nov 12;11:570825. doi: 10.3389/fmicb.2020.570825. eCollection 2020.


DOI:10.3389/fmicb.2020.570825
PMID:33262743
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7688474/
Abstract

With the emergence of next-generation sequencing (NGS) technology, there have been a large number of metagenomic studies that estimated the bacterial composition via 16S ribosomal RNA (16S rRNA) amplicon sequencing. In particular, subsets of the hypervariable regions in 16S rRNA, such as V1-V2 and V3-V4, are targeted using high-throughput sequencing. The sequences from different taxa are assigned to a specific taxon based on the sequence homology. Since such sequences are highly homologous or identical between species in the same genus, it is challenging to determine the exact species using 16S rRNA sequences only. Therefore, in this study, were defined to obtain maximum resolution related with species using 16S rRNA. For the taxonomic assignment using 16S rRNA, three major 16S rRNA databases are independently used since the lineage of certain bacteria is not consistent among these databases. On the basis of the NCBI taxonomy classification, we re-annotated inconsistent lineage information in three major 16S rRNA databases. For each species, we constructed a consensus sequence model for each hypervariable region and determined that consist of indistinguishable species in terms of sequence homology. Using a -nearest neighbor method and the species consensus sequence models, the species-level taxonomy was determined. If the species determined is a member of , the species group is assigned instead of a specific species. Notably, the results of the evaluation on our method using simulated and mock datasets showed a high correlation with the real bacterial composition. Furthermore, in the analysis of real microbiome samples, such as salivary and gut microbiome samples, our method successfully performed species-level profiling and identified differences in the bacterial composition between different phenotypic groups.

摘要

随着下一代测序(NGS)技术的出现,已经有大量的宏基因组学研究通过16S核糖体RNA(16S rRNA)扩增子测序来估计细菌组成。特别是,16S rRNA中高变区的子集,如V1-V2和V3-V4,被用于高通量测序。基于序列同源性,将来自不同分类群的序列分配到特定的分类单元。由于同一属内不同物种之间的此类序列高度同源或相同,仅使用16S rRNA序列来确定确切物种具有挑战性。因此,在本研究中,定义了 以使用16S rRNA获得与物种相关的最大分辨率。对于使用16S rRNA的分类学分配,由于某些细菌的谱系在这三个主要的16S rRNA数据库中不一致,因此独立使用了三个主要的16S rRNA数据库。基于NCBI分类法分类,我们重新注释了三个主要16S rRNA数据库中不一致的谱系信息。对于每个物种,我们为每个高变区构建了一个共有序列模型,并确定了在序列同源性方面无法区分的物种组成的 。使用 -最近邻方法和物种共有序列模型,确定了物种水平的分类学。如果确定的物种是 的成员,则分配物种组而不是特定物种。值得注意的是,使用模拟和mock数据集对我们的方法进行评估的结果与实际细菌组成具有高度相关性。此外,在对真实微生物组样本(如唾液和肠道微生物组样本)的分析中,我们的方法成功地进行了物种水平的分析,并确定了不同表型组之间细菌组成的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/f27f66b6666b/fmicb-11-570825-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/cc79e400bb9b/fmicb-11-570825-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/e7c3be93fdeb/fmicb-11-570825-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/3ba35fae47cb/fmicb-11-570825-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/6ab313a62d45/fmicb-11-570825-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/21ac78200285/fmicb-11-570825-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/e79a4ba267a4/fmicb-11-570825-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/f27f66b6666b/fmicb-11-570825-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/cc79e400bb9b/fmicb-11-570825-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/e7c3be93fdeb/fmicb-11-570825-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/3ba35fae47cb/fmicb-11-570825-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/6ab313a62d45/fmicb-11-570825-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/21ac78200285/fmicb-11-570825-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/e79a4ba267a4/fmicb-11-570825-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/7688474/f27f66b6666b/fmicb-11-570825-g007.jpg

相似文献

[1]
Data-Driven Modeling for Species-Level Taxonomic Assignment From 16S rRNA: Application to Human Microbiomes.

Front Microbiol. 2020-11-12

[2]
Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing.

mSphere. 2021-2-24

[3]
Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples.

Sci Rep. 2023-3-9

[4]
Construction & assessment of a unified curated reference database for improving the taxonomic classification of bacteria using 16S rRNA sequence data.

Indian J Med Res. 2020-1

[5]
Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

Int J Food Microbiol. 2017-9-18

[6]
GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis.

mSystems. 2024-2-20

[7]
Construction of habitat-specific training sets to achieve species-level assignment in 16S rRNA gene datasets.

Microbiome. 2020-5-15

[8]
TaxAss: Leveraging a Custom Freshwater Database Achieves Fine-Scale Taxonomic Resolution.

mSphere. 2018-9-5

[9]
Improving Species Level-taxonomic Assignment from 16S rRNA Sequencing Technologies.

Curr Protoc. 2023-11

[10]
Evaluation of 16S next-generation sequencing of hypervariable region 4 in wastewater samples: An unsuitable approach for bacterial enteric pathogen identification.

Sci Total Environ. 2019-3-21

引用本文的文献

[1]
Defining the cultured and uncultured bacterial fractions in Cannabis seeds.

Environ Microbiome. 2025-6-11

[2]
Effects of high-dose glucocorticoids on gut microbiota in the treatment of Graves' ophthalmopathy.

Microbiol Spectr. 2025-6-3

[3]
Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model.

BMC Bioinformatics. 2025-2-27

[4]
Combining 16S Sequencing and qPCR Quantification Reveals Driven Bacterial Overgrowth in the Skin of Severe Atopic Dermatitis Patients.

Biomolecules. 2023-6-23

[5]
Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon.

PeerJ. 2023

[6]
Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice.

Curr Microbiol. 2022-2-14

[7]
Species-Level Resolution of Female Bladder Microbiota from 16S rRNA Amplicon Sequencing.

mSystems. 2021-10-26

[8]
Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity.

Microorganisms. 2021-3-23

本文引用的文献

[1]
Taxonomic classification and abundance estimation using 16S and WGS-A comparison using controlled reference samples.

Forensic Sci Int Genet. 2020-5

[2]
Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data.

PLoS One. 2020-2-13

[3]
Integrated 16S rRNA Sequencing, Metagenomics, and Metabolomics to Characterize Gut Microbial Composition, Function, and Fecal Metabolic Phenotype in Non-obese Type 2 Diabetic Goto-Kakizaki Rats.

Front Microbiol. 2020-1-20

[4]
Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses.

PLoS One. 2020-1-24

[5]
TARGETING THE 16S RRNA GENE FOR BACTERIAL IDENTIFICATION IN COMPLEX MIXED SAMPLES: COMPARATIVE EVALUATION OF SECOND (ILLUMINA) AND THIRD (OXFORD NANOPORE TECHNOLOGIES) GENERATION SEQUENCING TECHNOLOGIES.

Int J Mol Sci. 2019-12-31

[6]
Metagenomic identification of severe pneumonia pathogens in mechanically-ventilated patients: a feasibility and clinical validity study.

Respir Res. 2019-11-27

[7]
Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.

Nat Commun. 2019-11-6

[8]
Enterotype-based Analysis of Gut Microbiota along the Conventional Adenoma-Carcinoma Colorectal Cancer Pathway.

Sci Rep. 2019-7-29

[9]
High-Throughput Illumina MiSeq Amplicon Sequencing of Yeast Communities Associated With Indigenous Dairy Products From Republics of Benin and Niger.

Front Microbiol. 2019-4-3

[10]
Taxonomy annotation and guide tree errors in 16S rRNA databases.

PeerJ. 2018-6-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索