Suppr超能文献

基于注意力引导的多尺度特征融合深度神经网络的肝脏血管分割。

Attention-Guided Deep Neural Network With Multi-Scale Feature Fusion for Liver Vessel Segmentation.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2629-2642. doi: 10.1109/JBHI.2020.3042069. Epub 2021 Jul 27.

Abstract

Liver vessel segmentation is fast becoming a key instrument in the diagnosis and surgical planning of liver diseases. In clinical practice, liver vessels are normally manual annotated by clinicians on each slice of CT images, which is extremely laborious. Several deep learning methods exist for liver vessel segmentation, however, promoting the performance of segmentation remains a major challenge due to the large variations and complex structure of liver vessels. Previous methods mainly using existing UNet architecture, but not all features of the encoder are useful for segmentation and some even cause interferences. To overcome this problem, we propose a novel deep neural network for liver vessel segmentation, called LVSNet, which employs special designs to obtain the accurate structure of the liver vessel. Specifically, we design Attention-Guided Concatenation (AGC) module to adaptively select the useful context features from low-level features guided by high-level features. The proposed AGC module focuses on capturing rich complemented information to obtain more details. In addition, we introduce an innovative multi-scale fusion block by constructing hierarchical residual-like connections within one single residual block, which is of great importance for effectively linking the local blood vessel fragments together. Furthermore, we construct a new dataset containing 40 thin thickness cases (0.625 mm) which consist of CT volumes and annotated vessels. To evaluate the effectiveness of the method with minor vessels, we also propose an automatic stratification method to split major and minor liver vessels. Extensive experimental results demonstrate that the proposed LVSNet outperforms previous methods on liver vessel segmentation datasets. Additionally, we conduct a series of ablation studies that comprehensively support the superiority of the underlying concepts.

摘要

肝脏血管分割技术在肝脏疾病的诊断和手术规划中迅速成为一种关键手段。在临床实践中,肝脏血管通常由临床医生在 CT 图像的每一层手动标注,这极其耗费精力。有几种深度学习方法可用于肝脏血管分割,然而,由于肝脏血管的巨大变化和复杂结构,提高分割性能仍然是一个主要挑战。以前的方法主要使用现有的 UNet 架构,但编码器的所有特征并不都对分割有用,有些甚至会造成干扰。为了解决这个问题,我们提出了一种新的肝脏血管分割深度神经网络,称为 LVSNet,它采用特殊的设计来获取肝脏血管的精确结构。具体来说,我们设计了注意力引导拼接(AGC)模块,以自适应地从高级特征指导的低级特征中选择有用的上下文特征。所提出的 AGC 模块专注于捕获丰富的互补信息,以获取更多细节。此外,我们通过在单个残差块内构建分层残差连接,引入了一种创新的多尺度融合块,这对于有效地将局部血管片段连接起来非常重要。此外,我们构建了一个新的数据集,其中包含 40 个薄层(0.625mm)的 CT 体积和标注的血管。为了评估该方法对小血管的有效性,我们还提出了一种自动分层方法,将大血管和小血管分开。大量的实验结果表明,所提出的 LVSNet 在肝脏血管分割数据集上优于以前的方法。此外,我们进行了一系列消融研究,全面支持了基本概念的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验