Suppr超能文献

涌现是信息的转化:一种统一理论。

Emergence as the conversion of information: a unifying theory.

机构信息

Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.

School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jul 11;380(2227):20210150. doi: 10.1098/rsta.2021.0150. Epub 2022 May 23.

Abstract

Is reduction always a good scientific strategy? The existence of the special sciences above physics suggests not. Previous research has shown that dimensionality reduction (macroscales) can increase the dependency between elements of a system (a phenomenon called 'causal emergence'). Here, we provide an umbrella mathematical framework for emergence based on information conversion. We show evidence that coarse-graining can convert information from one 'type' to another. We demonstrate this using the well-understood mutual information measure applied to Boolean networks. Using partial information decomposition, the mutual information can be decomposed into redundant, unique and synergistic information atoms. Then by introducing a novel measure of the synergy bias of a given decomposition, we are able to show that the synergy component of a Boolean network's mutual information can increase at macroscales. This can occur even when there is no difference in the total mutual information between a macroscale and its underlying microscale, proving information conversion. We relate this broad framework to previous work, compare it to other theories, and argue it complexifies any notion of universal reduction in the sciences, since such reduction would likely lead to a loss of synergistic information in scientific models. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.

摘要

还原总是一个好的科学策略吗?物理学之上的特殊科学的存在表明并非如此。先前的研究表明,降维(宏观尺度)可以增加系统元素之间的依赖性(一种称为“因果涌现”的现象)。在这里,我们提供了一个基于信息转换的涌现的伞式数学框架。我们证明了粗粒化可以将信息从一种“类型”转换为另一种类型。我们使用相互信息度量的很好理解的布尔网络来证明这一点。使用部分信息分解,可以将互信息分解为冗余、独特和协同信息原子。然后,通过引入给定分解协同偏差的新度量,我们能够证明布尔网络互信息的协同分量可以在宏观尺度上增加。即使在宏观尺度与其底层微观尺度之间不存在总互信息的差异时,也会发生这种情况,证明了信息转换。我们将这个广泛的框架与以前的工作联系起来,将其与其他理论进行比较,并认为它使科学中任何普遍还原的概念复杂化,因为这种还原可能导致科学模型中协同信息的丢失。本文是“复杂物理和社会技术系统中的涌现现象:从细胞到社会”主题问题的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2505/9131462/c90e9b3f799f/rsta20210150f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验