文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的荧光显微镜图像三维虚拟聚焦。

Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA, USA.

Bioengineering Department, University of California, Los Angeles, Los Angeles, CA, USA.

出版信息

Nat Methods. 2019 Dec;16(12):1323-1331. doi: 10.1038/s41592-019-0622-5. Epub 2019 Nov 4.


DOI:10.1038/s41592-019-0622-5
PMID:31686039
Abstract

We demonstrate that a deep neural network can be trained to virtually refocus a two-dimensional fluorescence image onto user-defined three-dimensional (3D) surfaces within the sample. Using this method, termed Deep-Z, we imaged the neuronal activity of a Caenorhabditis elegans worm in 3D using a time sequence of fluorescence images acquired at a single focal plane, digitally increasing the depth-of-field by 20-fold without any axial scanning, additional hardware or a trade-off of imaging resolution and speed. Furthermore, we demonstrate that this approach can correct for sample drift, tilt and other aberrations, all digitally performed after the acquisition of a single fluorescence image. This framework also cross-connects different imaging modalities to each other, enabling 3D refocusing of a single wide-field fluorescence image to match confocal microscopy images acquired at different sample planes. Deep-Z has the potential to improve volumetric imaging speed while reducing challenges relating to sample drift, aberration and defocusing that are associated with standard 3D fluorescence microscopy.

摘要

我们证明,深度神经网络可以经过训练,将二维荧光图像虚拟聚焦到样本内用户定义的三维(3D)表面上。我们使用这种称为 Deep-Z 的方法,通过在单个焦平面上获取的荧光图像时间序列,对秀丽隐杆线虫(Caenorhabditis elegans)的神经元活动进行了 3D 成像,在不进行任何轴向扫描、不增加额外硬件的情况下,将景深增加了 20 倍,也没有牺牲成像分辨率和速度。此外,我们证明,这种方法可以校正样本漂移、倾斜和其他像差,所有这些都可以在获取单个荧光图像后进行数字处理。该框架还可以将不同的成像模式相互连接,使得单个宽场荧光图像的 3D 重聚焦能够与在不同样本平面上获取的共聚焦显微镜图像匹配。Deep-Z 有可能在提高体积成像速度的同时,减少与标准 3D 荧光显微镜相关的样本漂移、像差和散焦等挑战。

相似文献

[1]
Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning.

Nat Methods. 2019-11-4

[2]
Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy.

Nat Commun. 2022-6-8

[3]
High-throughput widefield fluorescence imaging of 3D samples using deep learning for 2D projection image restoration.

PLoS One. 2022

[4]
Recurrent neural network-based volumetric fluorescence microscopy.

Light Sci Appl. 2021-3-23

[5]
Zero-shot learning enables instant denoising and super-resolution in optical fluorescence microscopy.

Nat Commun. 2024-5-16

[6]
Deep learning enables cross-modality super-resolution in fluorescence microscopy.

Nat Methods. 2018-12-17

[7]
Three-dimensional fluorescence microscopy through virtual refocusing using a recursive light propagation network.

Med Image Anal. 2022-11

[8]
Imaging adult C. elegans live using light-sheet microscopy.

J Microsc. 2021-3

[9]
Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.

Opt Express. 2020-9-28

[10]
Real-time slit scanning microscopy in the meridional plane.

Opt Lett. 2009-5-15

引用本文的文献

[1]
A state-of-the-art review of diffusion model applications for microscopic image and micro-alike image analysis.

Front Med (Lausanne). 2025-7-16

[2]
Ultracompact 3D integrated photonic chip for high-fidelity high-dimensional quantum gates.

Sci Adv. 2025-7-4

[3]
Universal point spread function engineering for 3D optical information processing.

Light Sci Appl. 2025-6-12

[4]
Capsule neural network and its applications in drug discovery.

iScience. 2025-3-14

[5]
Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation.

ArXiv. 2025-3-17

[6]
Production of an Innovative, Surface Area-Enhanced and Biodegradable Biofilm-Generating Device by 3D Printing.

Eng Life Sci. 2025-2-24

[7]
Deep learning-enabled filter-free fluorescence microscope.

Sci Adv. 2025-1-3

[8]
Optical sectioning methods in three-dimensional bioimaging.

Light Sci Appl. 2025-1-1

[9]
Precision autofocus in optical microscopy with liquid lenses controlled by deep reinforcement learning.

Microsyst Nanoeng. 2024-12-24

[10]
Super-resolved three-dimensional near-field mapping by defocused imaging and tracking of fluorescent emitters.

Nanophotonics. 2022-10-24

本文引用的文献

[1]
Instantaneous isotropic volumetric imaging of fast biological processes.

Nat Methods. 2019-4-29

[2]
Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram.

Light Sci Appl. 2019-3-6

[3]
Deep learning enables cross-modality super-resolution in fluorescence microscopy.

Nat Methods. 2018-12-17

[4]
Deep learning optical-sectioning method.

Opt Express. 2018-11-12

[5]
Automatically tracking neurons in a moving and deforming brain.

PLoS Comput Biol. 2017-5-18

[6]
High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers.

Nat Photonics. 2016-12

[7]
TrackMate: An open and extensible platform for single-particle tracking.

Methods. 2017-2-15

[8]
Accurate Automatic Detection of Densely Distributed Cell Nuclei in 3D Space.

PLoS Comput Biol. 2016-6-6

[9]
Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans.

Proc Natl Acad Sci U S A. 2016-2-23

[10]
SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.

Cell. 2015-12-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索