Department of Bioengineering, University of California, Berkeley, USA.
UC Berkeley - UCSF Graduate Program in Bioengineering, Berkeley, USA.
Nat Commun. 2020 Dec 4;11(1):6237. doi: 10.1038/s41467-020-19738-1.
Immunoassays and mass spectrometry are powerful single-cell protein analysis tools; however, interfacing and throughput bottlenecks remain. Here, we introduce three-dimensional single-cell immunoblots to detect both cytosolic and nuclear proteins. The 3D microfluidic device is a photoactive polyacrylamide gel with a microwell array-patterned face (xy) for cell isolation and lysis. Single-cell lysate in each microwell is "electrophoretically projected" into the 3 dimension (z-axis), separated by size, and photo-captured in the gel for immunoprobing and confocal/light-sheet imaging. Design and analysis are informed by the physics of 3D diffusion. Electrophoresis throughput is > 2.5 cells/s (70× faster than published serial sampling), with 25 immunoblots/mm device area (>10× increase over previous immunoblots). The 3D microdevice design synchronizes analyses of hundreds of cells, compared to status quo serial analyses that impart hours-long delay between the first and last cells. Here, we introduce projection electrophoresis to augment the heavily genomic and transcriptomic single-cell atlases with protein-level profiling.
免疫测定和质谱分析是强大的单细胞蛋白质分析工具;然而,接口和通量瓶颈仍然存在。在这里,我们介绍了三维单细胞免疫印迹来检测细胞质和核蛋白。三维微流控装置是一种光活性聚丙烯酰胺凝胶,具有微井阵列图案的面(xy),用于细胞分离和裂解。每个微井中的单细胞裂解物在电场的作用下被“电泳投影”到三维(z 轴)中,通过大小进行分离,并在凝胶中进行光捕获,用于免疫探测和共聚焦/光片成像。设计和分析是基于 3D 扩散的物理原理。电泳通量>2.5 个细胞/s(比已发表的串行采样快 70 倍),每个设备面积 25 个免疫印迹/mm(比以前的免疫印迹增加了 10 倍以上)。与传统的串行分析相比,三维微器件设计可以同步分析数百个细胞,而传统的串行分析在第一个和最后一个细胞之间会产生数小时的延迟。在这里,我们引入了投影电泳,以增加基因组和转录组单细胞图谱的蛋白质水平分析。