Lyu Peifen, Peng Tzu-Yu, Kopper Declan, Shelden Calum, Munday Jeremy N, Lu Yu-Jung, Leite Marina S
Department of Materials Science and Engineering, University of California─Davis, Davis, California 95616, United States.
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):35673-35682. doi: 10.1021/acsami.5c01561. Epub 2025 May 8.
Transition-metal nitrides (TMNs), such as hafnium nitride (HfN), titanium nitride (TiN), and zirconium nitride (ZrN), have emerged as highly promising materials in photonics and plasmonics, drawing significant interest due to their optical properties comparable to those of conventional plasmonic materials like Ag and Ag, with remarkable thermal and chemical stability. While TMNs possess high bulk melting points and impressive resistance to degradation, the impact of scaling down to nanoscale dimensions and exposure to oxidizing environments under high temperatures on their optical properties remains largely underexplored. In this work, we establish a comprehensive experimental framework combining in situ optical characterization and ex situ surface analysis to explore the behavior of TMNs at 600 °C with exposure to oxygen. This oxidation process enables gradual color transitions in TMNs, thereby opening pathways for innovative applications in high-temperature structural color for printing. We further investigate aluminum oxide (AlO) as a protective coating to effectively prevent oxidation and preserve optical behaviors up to 830 °C, making these coatings suitable for applications in demanding thermal environments. The findings highlight TMNs' potential in next-generation high-temperature photonic devices, balancing optical performance and durability in challenging environments.
过渡金属氮化物(TMNs),如氮化铪(HfN)、氮化钛(TiN)和氮化锆(ZrN),已成为光子学和等离子体学中极具前景的材料,因其光学性质与传统等离子体材料(如Ag)相当,且具有出色的热稳定性和化学稳定性而备受关注。虽然TMNs具有高熔点和显著的抗降解能力,但将其缩小到纳米尺度以及在高温下暴露于氧化环境对其光学性质的影响在很大程度上仍未得到充分研究。在这项工作中,我们建立了一个综合的实验框架,结合原位光学表征和非原位表面分析,以探索TMNs在600℃下暴露于氧气时的行为。这种氧化过程使TMNs能够逐渐发生颜色变化,从而为高温结构色打印的创新应用开辟了途径。我们进一步研究了氧化铝(AlO)作为保护涂层,以有效防止氧化并在高达830℃的温度下保持光学性能,使这些涂层适用于苛刻的热环境应用。研究结果突出了TMNs在下一代高温光子器件中的潜力,即在具有挑战性的环境中平衡光学性能和耐久性。