Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China.
Int J Comput Assist Radiol Surg. 2021 Jun;16(6):871-882. doi: 10.1007/s11548-021-02351-y. Epub 2021 Mar 29.
Nasopharyngeal carcinoma (NPC) is a category of tumors with high incidence in head-and-neck (H&N) body region, and the diagnosis and treatment planning are usually conducted by radiologists manually, which is tedious, time-consuming and unrepeatable. In this paper, we integrated different stages of this process and proposed a computer-aided framework to realize automatic detection, tumor region and sub-region segmentation, and visualization of NPC, which are usually investigated separately in literatures.
Multi-modality images are utilized in the framework. Firstly, NPC is detected by a convolutional neural network (CNN) on computed tomography (CT) scans. Then, NPC area is segmented from magnetic resonance imaging (MRI) images by using a multi-modality MRI fusion network. Thirdly, NPC sub-regions with different metabolic activities are divided on CT images of the same patient via an adaptive threshold algorithm. Finally, 3D surface model of NPC is generated for observing its shape, size, and location in the head region. The proposed method is compared with other algorithms by evaluation on the volumes and shapes of detected NPCs.
Experiments are conducted on CT images of 130 NPC patients and 102 subjects without NPC and MRI images of 149 NPC patients, among which 52 subjects are overlapped with both CT and MRI images. The reference for evaluation is generated by three experienced radiologists. The results demonstrated that our utilized models outperform other strategies with detection accuracy 0.882 and Dice similarity coefficient 0.719 for NPC segmentation. Sub-region division and the 3D visualized models show great acceptability in clinical usage.
The remarkable performance indicated the potential of our framework in alleviating workload of radiologist. Furthermore, the combined usage of multi-modality images is able to generate reliable segmentations of NPC area and sub-regions, which provide evidence to judge the heterogeneity among patients and guide the dose painting for radiation therapy.
鼻咽癌(NPC)是头颈部(H&N)区域高发肿瘤之一,其诊断和治疗计划通常由放射科医生手动完成,既繁琐又耗时且不可重复。在本文中,我们整合了该过程的不同阶段,并提出了一个计算机辅助框架,以实现 NPC 的自动检测、肿瘤区域和子区域分割以及可视化,这些通常在文献中分别进行研究。
该框架使用多模态图像。首先,通过卷积神经网络(CNN)在计算机断层扫描(CT)扫描上检测 NPC。然后,通过使用多模态 MRI 融合网络从磁共振成像(MRI)图像中分割 NPC 区域。接下来,通过自适应阈值算法在同一患者的 CT 图像上划分具有不同代谢活性的 NPC 子区域。最后,生成 NPC 的 3D 表面模型,用于观察其在头部区域的形状、大小和位置。通过评估检测到的 NPC 的体积和形状来比较所提出的方法与其他算法。
对 130 名 NPC 患者和 102 名无 NPC 患者的 CT 图像以及 149 名 NPC 患者的 MRI 图像进行了实验,其中 52 名患者同时具有 CT 和 MRI 图像。评估的参考由三名有经验的放射科医生生成。结果表明,我们使用的模型在 NPC 分割方面的检测准确率为 0.882,Dice 相似系数为 0.719,优于其他策略。子区域划分和 3D 可视化模型在临床应用中具有很高的可接受性。
卓越的性能表明该框架有潜力减轻放射科医生的工作量。此外,多模态图像的联合使用能够可靠地分割 NPC 区域和子区域,为判断患者之间的异质性和指导放射治疗剂量划定提供依据。